Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit

Author:

Bommier VéroniqueORCID

Abstract

Context. This paper presents a numerical application of a self-consistent theory of partial redistribution in nonlocal thermodynamical equilibrium conditions, developed in previous papers of the series. Aims. The code was described in IV of this series. However, in that previous paper, the numerical results were unrealistic. The present paper presents an approximation able to restore the reliability of the outgoing polarization profiles. Methods. The convergence of the results is also proved. It is demonstrated that the step increment decreases like 1/Nα, with α >  1. Results. Thanks to these additions, the results series behaves like a Riemann series, which is absolutely convergent. However, convergence is not fully reached in line wings within the allocated computing time. Development of efficient acceleration methods would be desirable for future work. Conclusions. Agreement between the computed and observed linear polarization profiles remains qualitative only. The discrepancy is assigned to the plane parallel atmosphere model, which is insufficient to describe the chromosphere, where these lines are formed. As all the integrals are numerical in the code, it could probably be adapted to more realistic and higher dimensional model atmospheres. However, this is time consuming for lines with a hyperfine structure, as in the Na I D lines. The net linear polarization observed in Na I D1 with the Zürich Imaging Polarimeter ZIMPOL mounted on the McMath-Pierce telescope at Kitt Peak is not confirmed by the present calculations and could be an artefact of instrumental polarization. The presence of instrumental polarization could be confirmed by the higher linear polarization degree observed by this instrument in the Na I D2 line center with respect to the present calculation result where the magnetic field is not accounted for. At this precise point, the Hanle effect acts as a depolarizing effect in the second solar spectrum. The observed linear polarization excess is found to be of the same order of magnitude in both line centers, namely 0.1%, which is also comparable to the instrumental polarization compensation level of this experiment.

Funder

GENCI

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3