Bayesian estimate of the superfluid moments of inertia from the 2016 glitch in the Vela pulsar

Author:

Montoli A.ORCID,Antonelli M.ORCID,Magistrelli F.,Pizzochero P. M.

Abstract

Context. The observation of the first pulse-to-pulse glitch in the Vela pulsar opens a new window among theoretical speculations on the internal dynamics of neutron stars as it allows us for testing models to factor in the circumstances of the first moments of a glitch. Several works in the literature have already considered the observational and physical parameters of the star by employing a minimal model with three rigidly rotating components. Aims. We improve the analytical study of the minimal three-component model for pulsar glitches by solving it with generic initial conditions for the two initial lags of their superfluid components. The purpose is to use this solution to fit the data of the 2016 Vela glitch by employing a Bayesian approach and to obtain a probability distribution for the physical parameters of the model and for observational parameters, such as the glitch rise time and the relaxation timescale. Methods. The fit is achieved through Bayesian inference. Due to the presence of an increase in the timing residuals near the glitch time, an extra magnetospheric component was added to the three-component model to deal with this phenomenon. A physically reasonable, non-informative prior was set on the different parameters of the model, so that the posterior distribution could be compared with state-of-the-art information obtained from microphysical calculations. By considering a model with a tightened prior on the moment of inertia fractions and by comparing it with the original model by means of Bayesian model selection, we studied the possibility of a crust-limited superfluid reservoir. Results. We obtained the posterior distribution for the moment of inertia fractions of the superfluid components, the coupling parameters, and the initial velocity lags between the components. An analysis of the inferred posterior also confirmed the presence of an overshoot in that glitch and set an upper limit of ∼6 s on the glitch rise timescale. The comparison between the two models with different priors on the moment of inertia fractions appears to indicate a need for a core participation in the glitch phenomenon, regardless of the uncertain strength of the entrainment coupling.

Funder

European Cooperation in Science and Technology

Narodowe Centrum Nauki

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neutron-star measurements in the multi-messenger Era;Astroparticle Physics;2024-02

2. Measuring the Vortex−Nucleus Pinning Force from Pulsar Glitch Rates;The Astrophysical Journal;2023-05-01

3. First results of the glitching pulsar monitoring programme at the Argentine Institute of Radioastronomy;Monthly Notices of the Royal Astronomical Society;2023-03-09

4. Anisotropic electron transport in the nuclear pasta phase;Monthly Notices of the Royal Astronomical Society;2023-02-21

5. Stochastic processes for pulsar timing noise: fluctuations in the internal and external torques;Monthly Notices of the Royal Astronomical Society;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3