Tomography of cool giant and supergiant star atmospheres

Author:

Kravchenko KaterynaORCID,Wittkowski MarkusORCID,Jorissen Alain,Chiavassa AndreaORCID,Van Eck SophieORCID,Anderson Richard I.ORCID,Freytag Bernd,Käufl UlliORCID

Abstract

Context. Asymptotic giant branch (AGB) stars are characterized by substantial mass loss, however the mechanism behind it not yet fully understood. The knowledge of the structure and dynamics of AGB-star atmospheres is crucial to better understanding the mass loss. The recently established tomographic method, which relies on the design of spectral masks containing lines that form in given ranges of optical depths in the stellar atmosphere, is an ideal technique for this purpose. Aims. We aim to validate the capability of the tomographic method in probing different geometrical depths in the stellar atmosphere and recovering the relation between optical and geometrical depth scales. Methods. We applied the tomographic method to high-resolution spectro-interferometric VLTI/AMBER observations of the Mira-type AGB star S Ori. The interferometric visibilities were extracted at wavelengths contributing to the tomographic masks and fitted to those computed from a uniform disk model. This allows us to measure the geometrical extent of the atmospheric layer probed by the corresponding mask. We then compared the observed atmospheric extension with others measured from available 1D pulsation CODEX models and 3D radiative-hydrodynamics CO5BOLD simulations. Results. While the average optical depths probed by the tomographic masks in S Ori decrease (with ⟨log τ0⟩ = −0.45, − 1.45, and − 2.45 from the innermost to the central and outermost layers), the angular diameters of these layers increase, from 10.59 ± 0.09 mas through 11.84 ± 0.17 mas, up to 14.08 ± 0.15 mas. A similar behavior is observed when the tomographic method is applied to 1D and 3D dynamical models. Conclusions. This study derives, for the first time, a quantitative relation between optical and geometrical depth scales when applied to the Mira star S Ori, or to 1D and 3D dynamical models. In the context of Mira-type stars, knowledge of the link between the optical and geometrical depths opens the way to deriving the shock-wave propagation velocity, which cannot be directly observed in these stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3