Diffusion of radial action in a galactic disc

Author:

Wozniak HervéORCID

Abstract

Context. The stellar migration of the galactic disc stars has been invoked to explain the dispersion of stellar metallicity observed in the solar neighbourhood. Aims. We seek to identify the dynamical mechanisms underlying stellar migration in an isolated galaxy disc under the influence of a bar. Our approach is to analyse the diffusion of dynamical quantities. Methods. We extend our previous work by exploring Chirikov’s diffusion rate (and derived timescale) of the radial action JR in an idealised N-body simulation of an isolated disc galaxy. We limit our study to the evolution of the disc region well after the formation of the bar, in a regime of adiabatic evolution. Results. The JR diffusion timescale TD(JR) is less than 3 Gyr for roughly half the galaxy mass. It is always much shorter than the angular momentum diffusion timescale TD(Lz) outside the stellar bar. In the disc, ⟨TD(JR)⟩ ∼ 1 Gyr. All non-axisymmetric morphological structures that are characteristic of resonances and waves in the disc are associated to particles with TD(JR) < 3 Gyr and TD(Lz) > 10 Gyr. Short TD(JR) can be explained by the gradual de-circularisation of initially circular orbits (JR = 0) under the effect of intermittent. Inner Linblad resonance scattering by wave trains propagating in the disc, well beyond the outer Lindblad resonance of the bar (OLR). This leads to a moderate secular heating of the disc beyond the bar’s OLR for 7 Gyr, which is comparable to solar neighbourhood observations. The complex multi-wave structure, mixing permanent and intermittent modes, allows for multiple resonance overlaps.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Five methods for determining pattern speeds in galaxies;Astronomy & Astrophysics;2023-04-28

2. Non-equilibrium in the solar neighbourhood using dynamical modelling with Gaia DR2;Monthly Notices of the Royal Astronomical Society;2021-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3