Preflare very long-periodic pulsations observed in Hα emission before the onset of a solar flare

Author:

Li Dong,Feng Song,Su Wei,Huang Yu

Abstract

Context. Very long-periodic pulsations during preflare phases (preflare-VLPs) have been detected in the full-disk solar soft X-ray (SXR) flux. They may be regarded as precursors to solar flares and may help us better understand the trigger mechanism of solar flares. Aims. In this Letter, we report a preflare-VLP event prior to the onset of an M1.1 circular-ribbon flare on 2015 October 16. It was simultaneously observed in Hα, SXR, and extreme ultraviolet (EUV) wavelengths. Methods. The SXR fluxes in 1−8 Å and 1−70 Å were recorded by the Geostationary Operational Environmental Satellite (GOES) and Extreme Ultraviolet Variability Experiment, respectively; the light curves in Hα and EUV 211 Å were integrated over a small local region, which were measured by the 1 m New Vacuum Solar Telescope and the Atmospheric Imaging Assembly (AIA), respectively. The preflare-VLP is identified as the repeat and quasi-periodic pulses in light curves during preflare phase. The quasi-periodicity can be determined from the Fourier power spectrum with Markov chain Monte Carlo-based Bayesian. Results. Seven well-developed pulses are found before the onset of an M1.1 circular-ribbon flare. They are firstly seen in the local light curve in Hα emission and then discovered in full-disk SXR fluxes in GOES 1−8 Å and ESP 1−70 Å, as well as the local light curve in AIA 211 Å. These well-developed pulses can be regarded as the preflare-VLP, which might be modulated by LRC-circuit oscillation in the current-carrying plasma loop. The quasi-period is estimated to be ∼9.3 min. Conclusions. We present the first report of a preflare-VLP event in the local Hα line and EUV wavelength, which could be considered a precursor of a solar flare. This finding should therefore prove useful for the prediction of solar flares, especially for powerful flares.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3