Interchange reconnection dynamics in a solar coronal pseudo-streamer

Author:

Pellegrin-Frachon T.,Masson S.,Pariat É.,Wyper P. F.,DeVore C. R.

Abstract

Context.The generation of the slow solar wind remains an open problem in heliophysics. One of the current theories among those aimed at explaining the injection of coronal plasma in the interplanetary medium is based on interchange reconnection. It assumes that the exchange of magnetic connectivity between closed and open fields allows the injection of coronal plasma in the interplanetary medium to travel along the newly reconnected open field. However, the exact mechanism underlying this effect is still poorly understood.Aims.Our objective is to study this scenario in a particular magnetic structure of the solar corona: a pseudo-streamer. This topological structure lies at the interface between open and closed magnetic field and is thought to be involved in the generation of the slow solar wind.Methods.We performed innovative 3D magnetohydrodynamic (MHD) simulations of the solar corona with a pseudo-streamer, using the Adaptively Refined MHD Solver (ARMS). By perturbing the quasi-steady ambient state with a simple photospheric, large-scale velocity flow, we were able to generate a complex dynamics of the open-and-closed boundary of the pseudo-streamer. We studied the evolution of the connectivity of numerous field lines to understand its precise dynamics.Results.We witnessed different scenarios of opening of the magnetic field initially closed under the pseudo-streamer: one-step interchange reconnection dynamics, along with more complex scenarios, including a coupling between pseudo-streamer and helmet streamer, as well as back-and-forth reconnections between open and closed connectivity domains. Finally, our analysis revealed large-scale motions of a newly opened magnetic field high in the corona that may be explained by slipping reconnection.Conclusions.By introducing a new analysis method for the magnetic connectivity evolution based on distinct closed-field domains, this study provides an understanding of the precise dynamics underway during the opening of a closed field, which enables the injection of closed-field, coronal plasma in the interplanetary medium. Further studies shall provide synthetic observations for these diverse outgoing flows, which could be measured by Parker Solar Probe and Solar Orbiter.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3