The slippery slope of dust attenuation curves

Author:

Hamed M.ORCID,Małek K.,Buat V.,Junais ,Ciesla L.,Donevski D.,Riccio G.,Figueira M.

Abstract

Aims. We investigate the dust attenuation of 122 heavily dust-obscured galaxies detected with the Atacama Large Millimeter Array (ALMA) and Herschel in the COSMOS field. We search for correlations between dust attenuation recipes and the variation of physical parameters, namely, the effective radii of galaxies, their star formation rates, and stellar masses. We aim to understand which of the commonly used laws best describes dust attenuation in dusty star-forming galaxies (DSFGs) at high redshift. Methods. We made use of the extensive photometric coverage of the COSMOS data combined with highly resolved dust continuum maps from ALMA. We used CIGALE to estimate various physical properties of these dusty objects, namely: their star formation rates (SFR), their stellar masses, and their attenuation at short wavelengths. We inferred the effective radii (Re) of galaxies using GALFIT in the Y band of HSC and ALMA continuum maps. We used these radii to investigate the relative compactness of the dust continuum and the extension of the rest-frame UV/optical Re(y)/Re(ALMA). Results. We find that the physical parameters calculated from our models strongly depend on the assumption of the dust attenuation curve. As expected, the most impacted parameter is the stellar mass, which leads to a change in the “starburstiness” of the objects. We find that taking into account the relative compactness of star-to-dust emission prior to SED fitting is crucial, especially when studying dust attenuation of dusty star-forming galaxies. Shallower attenuation curves do not show a clear preference of compactness with attenuation, while the Calzetti attenuation curve is shown to prefer a comparable spatial extent of unattenuated stellar light and dust emission. The evolution of the Re(UV)/Re(ALMA) ratio with redshift peaks around the cosmic noon in our sample of DSFGs, showing that this compactness is correlated with the cosmic SFR density of these dusty sources.

Funder

National Science Centre

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3