Turbulent processing of PAHs in protoplanetary discs

Author:

Lange K.,Dominik C.,Tielens A. G. G. M.

Abstract

Context. Polycyclic aromatic hydrocarbons (PAHs) have been detected in numerous circumstellar discs. Despite the correlation between stellar temperature and low PAH detections rates, the diversity of PAH detections and non-detections at similar stellar properties is not well understood. Aims. We propose the continuous processing of PAHs through clustering, adsorption on dust grains, and their reverse-processes as key mechanisms to reduce the emission-capable PAH abundance in protoplanetary discs. This cycle of processing is driven by vertical turbulence in the disc mixing PAHs between the disc midplane and the photosphere. Methods. We used a theoretical Monte Carlo model for photodesorption in the photosphere and a coagulation code in the disc midplane to estimate the relevance and timescale of these processes in a Herbig Ae/Be disc environment. By combining these components in a 1D vertical model, we calculated the gas-phase depletion of PAHs that stick as clusters on dust grains. Results. Our results show that the clustering of gas-phase PAHs is very efficient, and that clusters with more than 100 monomers can grow for years before they are able to freeze out in the disc midplane. Once a PAH cluster is frozen on the dust grain surface, the large heat capacity of these clusters prevents them from evaporating off the grains in UV-rich environments such as the photosphere. Therefore, the clustering of PAHs followed by freeze-out can lead to a depletion of gas-phase PAHs in protoplanetary discs. We find that this mechanism is more efficient when the PAH species has fewer carbon atoms. In contrast, PAH monomers and very small clusters consisting of a few monomers can easily detach from the grain by absorption of a single UV photon. Evaluated over the lifetime of protoplanetary discs, we find a depletion of PAHs by a factor that ranges between 50 and 1000 compared to the standard ISM abundance of PAHs in the inner disc through turbulent processing. Conclusions. Through these processes, we favour PAHs smaller than circumovalene (C66H20) as the major gas-phase emitters of the disc photosphere as larger PAH monomers cannot photodesorb from the grain surface. These gas-phase PAHs co-exist with large PAH clusters sticking on dust grains. We find a close relation between the amount of PAHs frozen out on dust grains and the dust population, as well as the strength of the vertical turbulence.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3