Molecular gas in super spiral galaxies

Author:

Lisenfeld Ute,Ogle Patrick M.,Appleton Philip N.,Jarrett Thomas H.,Moncada-Cuadri Blanca M.

Abstract

At the highest stellar masses (log(M*) ≳ 11.5 M), only a small fraction of galaxies are disk-like and actively star-forming objects. These so-called ‘super spirals’ are ideal objects to better understand how galaxy evolution proceeds and to extend our knowledge about the relation between stars and gas to a higher stellar mass regime. We present new CO(1–0) data for a sample of 46 super spirals and for 18 slightly lower-mass (log(M*) > 11.0 M) galaxies with broad HI lines – HI fast-rotators (HI-FRs). We analyze their molecular gas mass, derived from CO(1–0), in relation to their star formation rate (SFR) and stellar mass, and compare the results to values and scaling relations derived from lower-mass galaxies. We confirm that super spirals follow the same star-forming main sequence (SFMS) as lower-mass galaxies. We find that they possess abundant molecular gas (mean redshift-corrected molecular gas mass fraction (log(fmol, zcorr) = −1.36 ± 0.02), which lies above the extrapolation of the scaling relation with stellar mass derived from lower-mass galaxies, but within the relation between fmol and the distance to the SFMS. The molecular gas depletion time, τdep = Mmol/SFR, is higher than for lower-mass galaxies on the SFMS (τdep = 9.30 ± 0.03, compared to τdep = 9.00 ± 0.02 for the comparison sample) and seems to continue an increasing trend with stellar mass. HI-FR galaxies have an atomic-to-molecular gas mass ratio that is in agreement with that of lower-mass galaxies, indicating that the conversion from the atomic to molecular gas proceeds in a similar way. We conclude that the availability of molecular gas is a crucial factor to enable star formation to continue and that, if gas is present, quenching is not a necessary destiny for high-mass galaxies. The difference in gas depletion time suggests that the properties of the molecular gas at high stellar masses are less favorable for star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3