Small-scale loops heated to transition region temperatures and their chromospheric signatures in the simulated solar atmosphere

Author:

Skan M.,Danilovic S.,Leenaarts J.,Calvo F.,Rempel M.ORCID

Abstract

Context. Recent observations have revealed loop-like structures at very small scales visible in observables that sample the transition region (TR) and even coronal temperatures. These structures are referred to as either ‘unresolved fine structures’, ‘dynamic cool loops’, ‘miniature hot loops’ or ‘campfires’ depending on the observables in which they are detected. Their formation remains unclear. Aims. Realistic magnetohydrodynamic simulations and forward synthesis of spectral lines are used to investigate how these features occur. Methods. Computations were carried out using the MURaM code to generate model atmospheres. The synthetic Hα and Si IV spectra are calculated at two angles (μ = 1, μ = 0.66) using the Multi3D code. We traced magnetic field lines in the model and examined the evolution of the underlying field topology. Results. The synthetic Hα Dopplergrams reveal loops that evolve dramatically within a few minutes. The synthetic Hα line profiles show observed asymmetries and Doppler shifts in the line core. However, they also show strong emission peaks in the line wings, even at the slanted view. The synthetic Si IV emission features partly coincide with structures visible in Hα Dopplergrams and partly follow separate magnetic field threads. Some are even visible in the emission measure maps for the lg(T/K) = [5.8, 6.2] temperature interval. The emission areas trace out the magnetic field lines rooted in opposite polarities in a bipolar region. Conclusions. The model shows that a loop-like structure in a bipolar system with footpoints undergoing rapid movement and shuffling can produce many small-scale recurrent events heated to high temperatures. It demonstrates that heating to different temperatures occurs and can be confined to a small part of the loop, at the location where resistive and viscous heating increases. The model largely reproduces the observed features in terms of size, lifetime and morphology in chromospheric, TR and coronal observables. The morphology and evolution of the resulting observable features can vary depending on the viewing angle.

Funder

Swedish Research Council

Swedish National Space Agency

Knut and Alice Wallenberg Foundation

SOLARNET/European Union’s Horizon 2020

National Center for Atmospheric Research/National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3