Metallicity estimations of MW, SMC, and LMC classical Cepheids from the shape of the V- and I-band light curves

Author:

Hocdé V.ORCID,Smolec R.,Moskalik P.,Ziółkowska O.,Singh Rathour R.

Abstract

Context. Estimating the metallicity of classical Cepheids is of prime importance for studying metallicity effects on stellar evolution and the chemical evolution of galaxies, as well as on the period–luminosity relation used on the extragalactic distance scale. Aims. Our first aim is to establish new empirical relations for estimating the iron content of classical Cepheids for short and long periods based on Fourier parameters from the V- and I-band light curves. We go on to apply these relations to Cepheids from data on the Milky Way (MW) as well as the Small and Large Magellanic Clouds (SMC and LMC) from the literature. Methods. We retrieved the metallicities of 586 fundamental-mode Cepheids from spectroscopic determinations in the literature and we found well-sampled light curves for 545 of them in different V-band catalogs. We then described the shape of these light curves by applying a Fourier decomposition and we fit the empirical relations between the Fourier parameters and the spectroscopic metallicities individually, for short-period (2.5 < P < 6.3 days) and long-period Cepheids (12 < P < 40 days). We verified the accuracy of these relations by applying them to V-band light curves of Cepheids from the Small and Large Magellanic Clouds and comparing these derived metallicities to literature values. We calibrated new interrelations of Fourier parameters to convert these empirical relations into the I band. We then used these I-band relations to derive the metallicity of fundamental-mode Cepheids from OGLE-IV for MW, SMC, and LMC (486, 695, and 1697 stars, respectively). Finally, we mapped the metallicity distribution in these galaxies for the purpose of investigating potential applications in galactic archeology. Results. For short-period Cepheids, our best fit is given for a relation based on explicit amplitude terms A1 and A2 of the first and second harmonic, respectively. In the V and I bands, these empirical relations are found with an intrinsic scatter (rms) of 0.12 dex. This relation performs well for estimations of [Fe/H] between about −0.5 and 0.1 dex, but it remains uncertain outside this range because of the lack of a spectroscopic metallicity required for the calibration. For long-period Cepheids, we found a metallicity dependence on the Fourier parameters A1, ϕ21, and R41. We found an intrinsic scatter of 0.25 dex when using this relation. The empirical relations in the V and I bands allow us to derive the mean metallicity of a sample of MW, SMC, and LMC Cepheids that is in agreement with literature values within 1σ. We also show that these relations are precise enough to reconstruct the radial metallicity gradients within the MW from OGLE data. Conclusions. The empirical relations in the V and I bands that are calibrated in this work for short- and long-period Cepheids provide a useful new tool for estimating the metallicity of Cepheids that are not accessible via spectroscopy. The calibration can be improved with further high-resolution spectroscopic observations of metal-poor Cepheids and homogeneous photometries in the V and I bands.

Funder

National Science Center, Poland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3