Spatially resolving polycyclic aromatic hydrocarbons in Herbig Ae disks with VISIR-NEAR at the VLT

Author:

Yoffe G.ORCID,van Boekel R.,Li A.,Waters L. B. F. M.,Maaskant K.,Siebenmorgen R.,van den Ancker M.,dit de la Roche D. J. M. Petit,Lopez B.,Matter A.,Varga J.,Hogerheijde M. R.,Weigelt G.,Oudmaijer R. D.,Pantin E.,Meyer M. R.,Augereau J.-C.,Henning Th.

Abstract

Context. The emission from polycyclic aromatic hydrocarbons (PAHs) arises from the uppermost layers of protoplanetary disks, higher than the optical/near-infrared scattered light and similar to the emission from the highly thick 12CO millimeter lines. The PAH intensity profiles trace the gas distribution and can constrain the penetration depth of UV radiation. Aims. We aim to constrain the spatial intensity profiles of the four strongest PAH emission features in the telluric N-band spectral region. Thereby, we seek to constrain the dependence of PAH properties on the (radial) location in the disk, such as charge state, the interrelation with the presence and dynamics of small silicate grains, and the correlation of PAH emission with gas or dust. Methods. We used the long-slit spectroscopy mode of the VISIR-NEAR experiment to perform diffraction-limited observations of eight nearby Herbig Ae protoplanetary disks. We extracted spectra for various locations along the slit with a spectral resolution of R ≈ 300 and performed a compositional fit at each spatial location using spectral templates of silicates and the four PAH bands. This yields the intensity versus location profiles of each species. Results. We obtained spatially resolved intensity profiles of the PAH emission features in the N band for five objects (AB Aurigae, HD 97048, HD 100546, HD 163296, and HD 169142). We observe two kinds of PAH emission geometry in our sample: centrally peaked (HD 97048) and ring-like (AB Aurigae, HD 100546, HD 163296, and potentially HD 169142). Comparing the spatial PAH emission profiles with near-infrared scattered light images, we find a strong correlation in the disk substructure but a difference in radial intensity decay rate. The PAH emission shows a less steep decline with distance from the star. Finally, we find a correlation between the presence of (sub)micron-sized silicate grains and the depletion of PAH emission within the inner regions of the disks. Conclusions. In this work we find the following: (1) PAH emission traces the extent of Herbig Ae disks to a considerable radial distance. (2) The correlation between the presence of silicate emission within the inner regions of disks and the depletion of PAH emission can result from dust-mixing and PAH coagulation mechanisms and competition over UV photons. (3) For all objects in our sample, PAHs undergo stochastic heating across the entire spatial extent of the disk and are not saturated. (4) The difference in radial intensity decay rates between the PAHs and scattered-light profiles may be attributed to shadowing and dust-settling effects, which impact the scattering grains more so than the PAHs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3