Reconstruction of weak lensing mass maps for non-Gaussian studies in the celestial sphere

Author:

Kansal VanshikaORCID

Abstract

We present a novel method for reconstructing weak lensing mass or convergence maps as a probe to study non-Gaussianities in the cosmic density field. While previous surveys have relied on a flat-sky approximation, forthcoming Stage IV surveys will cover such large areas with a large field of view (FOV) to motivate mass reconstruction on the sphere. Here, we present an improved Kaiser-Squires (KS+) mass inversion method using a HEALPix pixelisation of the sphere while controlling systematic effects. As in the KS+ methodology, the convergence maps were reconstructed without noise regularisation to preserve the information content and allow for non-Gaussian studies. The results of this new method were compared with those of the Kaiser-Squires (KS) estimator implemented on the curved sky using high-resolution realistic N-body simulations. The quality of the method was evaluated by estimating the two-point correlation functions, third- and fourth-order moments, and peak counts of the reconstructed convergence maps. The effects of masking, sampling, and noise were tested. We also examined the systematic errors introduced by the flat-sky approximation. We show that the improved Kaiser-Squires on the sphere (SKS+) method systematically improves inferred correlation errors by ∼10 times and provides on average a 20–30 % better maximum signal-to-noise peak estimation compared to Kaiser-Squires on the sphere (SKS). We also show that the SKS+ method is nearly unbiased and reduces errors by a factor of about 2 and 4 in the third- and fourth-order moments, respectively. Finally, we show how the reconstruction of the convergence field directly on the celestial sphere eliminates the projection effects and allows the exclusion or consideration of a specific region of the sphere in the processing.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3