Activity distribution of comet 67P/Churyumov-Gerasimenko from combined measurements of non-gravitational forces and torques

Author:

Attree N.ORCID,Jorda L.,Groussin O.ORCID,Agarwal J.,Lasagni Manghi R.ORCID,Tortora P.ORCID,Zannoni M.ORCID,Marschall R.ORCID

Abstract

Aims. Understanding the activity is vital for deciphering the structure, formation, and evolution of comets. We investigate models of cometary activity by comparing them to the dynamics of 67P/Churyumov-Gerasimenko. Methods. We matched simple thermal models of water activity to the combined Rosetta datasets by fitting to the total outgassing rate and four components of the outgassing induced non-gravitational force and torque, with a final manual adjustment of the model parameters to additionally match the other two torque components. We parametrised the thermal model in terms of a distribution of relative activity over the surface of the comet, and attempted to link this to different terrain types. We also tested a more advanced thermal model based on a pebble structure. Results. We confirm a hemispherical dichotomy and non-linear water outgassing response to insolation. The southern hemisphere of the comet and consolidated terrain show enhanced activity relative to the northern hemisphere and dust-covered, unconsolidated terrain types, especially at perihelion. We further find that the non-gravitational torque is especially sensitive to the activity distribution, and to fit the pole-axis orientation in particular, activity must be concentrated (in excess of the already high activity in the southern hemisphere and consolidated terrain) around the south pole and on the body and neck of the comet over its head. This is the case for both the simple thermal model and the pebble-based model. Overall, our results show that water activity cannot be matched by a simple model of sublimating surface ice driven by the insolation alone, regardless of the surface distribution, and that both local spatial and temporal variations are needed to fit the data. Conclusions. Fully reconciling the Rosetta outgassing, torque, and acceleration data requires a thermal model that includes both diurnal and seasonal effects and also structure with depth (dust layers or ice within pebbles). This shows that cometary activity is complex. Nonetheless, non-gravitational dynamics provides a useful tool for distinguishing between different thermophysical models and aids our understanding.

Funder

European Union Horizon 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3