Massive pre-main-sequence stars in M17

Author:

Poorta J.ORCID,Ramírez-Tannus M. C.ORCID,de Koter A.,Backs F.ORCID,Derkink A.ORCID,Bik A.ORCID,Kaper L.

Abstract

Context. Recently much progress has been made in probing the embedded stages of massive star formation, pointing to formation scenarios that are reminiscent of a scaled-up version of low-mass star formation. However, the latest stages of massive-star formation have rarely been observed, as young massive stars are assumed to reveal their photospheres only when they are fully formed. Aims. Using first and second overtone CO bandhead emission and near- to mid-infrared photometry, we aim to characterize the remnant formation disks around five unique pre-main-sequence (PMS) stars with masses 6–12 M that have constrained stellar parameters thanks to their detectable photospheres. We seek to understand this emission and the disks from which it originates in the context of the evolutionary stage of the studied sources. Methods. We used an analytic disk model, and adopted local thermodynamical equilibrium, to fit the CO bandhead and the dust emission, assumed to originate in different disk regions. For the first time, we modeled the second overtone emission, which helped us to put tighter constraints on the density of the CO gas. Furthermore, we fit continuum normalized bandheads, using models for stellar and dust continuum, and show the importance of this in constraining the emission region. We also included 13CO in our models as an additional probe of the young nature of the studied objects. Results. We find that the CO emission originates in a narrow region close to the star (<1 AU) and under very similar disk conditions (temperatures and densities) for the different objects. This is consistent with previous modeling of this emission in a diverse range of young stellar objects and identifies CO emission as an indicator of the presence of a gaseous inner disk reaching close to the stellar surface. From constraining the location of the inner edge of the dust emission, we find that all but one of the objects have undisrupted inner dust disks. Conclusions. We discuss these results in the context of the positions of these PMS stars in the Hertzsprung-Russel diagram and the CO emission’s association with an early age and high accretion rates in (massive) young stellar objects. We conclude, considering their mass range and the fact that their photospheres are detected, that the M17 PMS stars are observed in a relatively early formation stage. They are therefore excellent candidates for longer wavelength studies to further constrain the end stages of massive star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3