The cosmic DANCe of Perseus

Author:

Olivares J.ORCID,Bouy H.ORCID,Miret-Roig N.ORCID,Galli P. A. B.ORCID,Sarro L. M.ORCID,Moraux E.ORCID,Berihuete A.ORCID

Abstract

Context. Star-forming regions are excellent benchmarks for testing and validating theories of star formation and stellar evolution. The Perseus star-forming region, being one of the youngest (< 10 Myr), closest (280−320 pc), and most studied in the literature, is a fundamental benchmark. Aims. We aim to study the membership, phase-space structure, mass, and energy (kinetic plus potential) distribution of the Perseus star-forming region using public catalogues (Gaia, APOGEE, 2MASS, and Pan-STARRS). Methods. We used Bayesian methodologies that account for extinction to identify the Perseus physical groups in the phase-space, retrieve their candidate members, derive their properties (age, mass, 3D positions, 3D velocities, and energy), and attempt to reconstruct their origin. Results. We identify 1052 candidate members in seven physical groups (one of them new) with ages between 3 and 10 Myr, dynamical super-virial states, and large fractions of energetically unbounded stars. Their mass distributions are broadly compatible with that of Chabrier for masses ≳0.1 M and do not show hints of over-abundance of low-mass stars in NGC 1333 with respect to IC 348. These groups’ ages, spatial structure, and kinematics are compatible with at least three generations of stars. Future work is still needed to clarify if the formation of the youngest was triggered by the oldest. Conclusions. The exquisite Gaia data complemented with public archives and mined with comprehensive Bayesian methodologies allow us to identify 31% more members than previous studies, discover a new physical group (Gorgophone: 7 Myr, 191 members, and 145 M), and confirm that the spatial, kinematic, and energy distributions of these groups support the hierarchical star formation scenario.

Funder

European Research Council

Investments for the future, IdEx Bordeaux

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference109 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical traceback age of the Octans young stellar association;Astronomy & Astrophysics;2024-08-27

2. Young nearby open clusters and their luminosity functions;Astronomy & Astrophysics;2023-10

3. Walkaway Star Candidates in IC 348 and Their Possible Birthplaces;The Astrophysical Journal;2023-09-01

4. Distances to Nearby Molecular Clouds Traced by Young Stars;The Astrophysical Journal Supplement Series;2023-04-01

5. The origin of free-floating planets;Astrophysics and Space Science;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3