Resolved near-UV hydrogen emission lines at 40-Myr super-Jovian protoplanet Delorme 1 (AB)b

Author:

Ringqvist Simon C.ORCID,Viswanath GayathriORCID,Aoyama YuhikoORCID,Janson MarkusORCID,Marleau Gabriel-DominiqueORCID,Brandeker AlexisORCID

Abstract

Context. Accretion at planetary-mass companions (PMCs) suggests the presence of a protoplanetary disc in the system, likely accompanied by a circumplanetary disc. High-resolution spectroscopy of accreting PMCs is very difficult due to their proximity to bright host stars. For well-separated companions, however, such spectra are feasible and they are unique windows into accretion. Aims. We have followed up on our observations of the 40-Myr, and still accreting, circumbinary PMC Delorme 1 (AB)b. We used high-resolution spectroscopy to characterise the accretion process further by accessing the wealth of emission lines in the near-UV. Methods. We have used the UVES spectrograph on the ESO VLT/UT2 to obtain Rλ ≈ 50 000 spectroscopy, at 3300–4520 Å, of Delorme 1 (AB)b. After separating the emission of the companion from that of the M5 low-mass binary, we performed a detailed emission-line analysis, which included planetary accretion shock modelling. Results. We reaffirm ongoing accretion in Delorme 1 (AB)b and report the first detections in a (super-Jovian) protoplanet of resolved hydrogen line emission in the near-UV (Hγ, Hδ, Hϵ, H8, and H9). We tentatively detect H11, H12, He I, and Ca II H/K. The analysis strongly favours a planetary accretion shock with a line-luminosity-based accretion rate of = 2 × 10−8 MJ yr−1. The lines are asymmetric and are well described by sums of narrow and broad components with different velocity shifts. The overall line shapes are best explained by a pre-shock velocity of v0 = 170 ± 30 km s−1, implying a planetary mass of MP = 13 ± 5 MJ, and number densities of n0 ≳ 1013 cm−3 or n0 ∼ 1011 cm−3. The higher density implies a small line-emitting area of ∼1% relative to the planetary surface. This favours magnetospheric accretion, a case potentially strengthened by the presence of blueshifted emission in the line profiles. Conclusions. High-resolution spectroscopy offers the opportunity to resolve line profiles, which are crucial for studying the accretion process in depth. The super-Jovian protoplanet Delorme 1 (AB)b is still accreting at ∼40 Myr. Thus, Delorme 1 belongs to the growing family of ‘Peter Pan disc’ systems with (a) protoplanetary and/or circumplanetary disc(s) far beyond the typically assumed disc lifetimes. Further observations of this benchmark companion and its presumed disc(s) will help answer key questions about the accretion geometry in PMCs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3