Application of a neural network classifier for the generation of clean Small Magellanic Cloud stellar samples

Author:

Jiménez-Arranz Ó.ORCID,Romero-Gómez M.ORCID,Luri X.ORCID,Masana E.ORCID

Abstract

Context. Previous attempts to separate Small Magellanic Cloud (SMC) stars from the Milky Way (MW) foreground stars are based only on the proper motions of the stars. Aims. In this paper, we aim to develop a statistical classification technique to effectively separate the SMC stars from the MW stars using a wider set of Gaia data. We aim to reduce the possible contamination from MW stars compared to previous strategies. Methods. The new strategy is based on a neural network classifier, applied to the bulk of the Gaia DR3 data. We produce three samples of stars flagged as SMC members, with varying levels of completeness and purity, obtained by application of this classifier. Using different test samples, we validated these classification results and compared them with the results of the selection technique employed in the Gaia Collaboration papers, which was based solely on the proper motions. Results. The contamination of the MW in each of the three SMC samples is estimated to be in the 10–40% range; the “best case” in this range is obtained for bright stars (G < 16), which belong to the Vlos sub-samples, and the “worst case” for the full SMC sample determined by using very stringent criteria based on StarHorse distances. A further check based on the comparison with a nearby area with uniform sky density indicates that the global contamination in our samples is probably close to the low end of the range, around 10%. Conclusions. We provide three selections of SMC star samples with different degrees of purity and completeness, for which we estimate a low contamination level and which we have successfully validated using SMC RR Lyrae, SMC Cepheids, and SMC-MW StarHorse samples.

Funder

Agència de Gestió d’Ajuts Universitaris i de Recerca

MICIN/AEI

ERDF A way of making Europe

María de Maeztu

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3