The Araucaria project: High-precision orbital parallaxes and masses of binary stars

Author:

Gallenne A.ORCID,Mérand A.,Kervella P.ORCID,Graczyk D.ORCID,Pietrzyński G.,Gieren W.,Pilecki B.ORCID

Abstract

Aims. We aim to measure very precise and accurate model-independent masses and distances of detached binary stars. Precise masses at the < 1% level are necessary to test and calibrate stellar interior and evolution models, while precise and independent orbital parallaxes are essential to check for the next Gaia data releases. Methods. We combined RV measurements with interferometric observations to determine orbital and physical parameters of ten double-lined spectroscopic systems. We report new relative astrometry from VLTI/GRAVITY and, for some systems, new VLT/UVES spectra to determine the radial velocities of each component. Results. We measured the distance of ten binary systems and the mass of their components with a precision as high as 0.03% (average level 0.2%). They are combined with other stellar parameters (effective temperatures, radii, flux ratios, etc.) to fit stellar isochrones and determine their evolution stage and age. We also compared our orbital parallaxes with Gaia and showed that half of the stars are beyond 1σ with our orbital parallaxes; although, their RUWE is below the frequently used cutoff of 1.4 for reliable Gaia astrometry. By fitting the telluric features in the GRAVITY spectra, we also estimated the accuracy of the wavelength calibration to be ∼0.02% in high and medium spectral resolution modes. Conclusions. We demonstrate that combining spectroscopic and interferometric observations of binary stars provides extremely precise and accurate dynamical masses and orbital parallaxes. As they are detached binaries, they can be used as benchmark stars to calibrate stellar evolution models and test the Gaia parallaxes.

Funder

ANR

ANID-ALMA

ERC

Polish National Science Center

Polish Ministry of Science and Higher Education

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3