Variations in the intermediate wind region of the blue supergiant 55 Cygni

Author:

Cidale L. S.,Haucke M.,Arias M. L.,Kraus M.,Campuzano Castro F.,Venero R. O. J.,Mercanti L.,Curé M.,Granada A.

Abstract

Context. The quantitative near-infrared (NIR) spectroscopic synthesis is an important technique for determining wind properties of massive stars. The Brα line is an excellent mass-loss tracer and provides valuable information on the physical conditions of intermediate-wind regions. The knowledge of the wind properties gained by studying the NIR lines could provide extra ingredients to the theory of line-driven winds, mainly because the standard theory does not predict observed properties of blue supergiants, such as high values for the β parameter (β> 2), low terminal velocities, and mass-loss variability. Aims. We seek to enhance our understanding of the wind properties of B supergiants. To this end, we propose analysing their NIR spectra over different epochs to study wind variability and its connection with phenomena arising from regions close to the photosphere. Methods. We present the first sets of multi-epoch high-resolution K- and L-band spectra of 55 Cyg acquired with the Gemini Near-InfraRed Spectrograph (GNIRS). We measured line equivalent widths and modelled the Brα line to derive (unclumped) mass-loss rates. Synthetic line profiles were computed for a homogeneous spherical wind by solving the radiative transfer equations in the co-moving frame for a multi-level atom in non-local thermodynamic equilibrium (NLTE). Results. We observe variations in the spectral lines originating in the upper photosphere and the wind. The perturbations, on average, have periods of ~13 and ~23 days; the latter is similar to that found previously from optical data (22.5 days). The NIR lines observed in 2013 are described with the same wind structure used to model a quasi-simultaneous observation in Hα. By contrast, from observations taken in 2015, we derived a higher mean mass-loss rate. Variations in the mass-loss rate are also detected within a few weeks. Interestingly, we find that the profile shape of the Hu14 line sets constraints on the mass loss. Moreover, we find the Mg II doublet in emission, which suggests a tenuous circumstellar gas ring or shell. Conclusions. The variability detected in the NIR H emission lines of 55 Cyg is related to changes in the mass-loss rate, which doubled its value between 2013 and 2015. Furthermore, the short-term variability (within three weeks) in the spectral lines and mass loss supports the hypothesis of strange-mode oscillations. This pilot project demonstrates the importance of comprehensive monitoring of blue supergiants’ variability to deeply understand the physical properties of their stellar winds and the role of pulsations in recurrently enhancing mass loss.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3