LOFAR Deep Fields: Probing faint Galactic polarised emission in ELAIS-N1

Author:

Šnidarić IvaORCID,Jelić ViborORCID,Mevius MaaijkeORCID,Brentjens Michiel,Erceg Ana,Shimwell Timothy W.,Piras SaraORCID,Horellou CathyORCID,Sabater Jose,Best Philip N.,Bracco AndreaORCID,Ceraj Lana,Haverkorn MarijkeORCID,O’Sullivan Shane P.ORCID,Turić Luka,Vacca Valentina

Abstract

We present the first deep polarimetric study of Galactic synchrotron emission at low radio frequencies. Our study is based on 21 observations of the European Large Area Infrared Space Observatory Survey-North 1 (ELAIS-N1) field using the Low-Frequency Array (LOFAR) at frequencies from 114.9 to 177.4 MHz. These data are a part of the LOFAR Two-metre Sky Survey Deep Fields Data Release 1. We used very low-resolution (4.3′) Stokes QU data cubes of this release. We applied rotation measure (RM) synthesis to decompose the distribution of polarised structures in Faraday depth, and cross-correlation RM synthesis to align different observations in Faraday depth. We stacked images of about 150 h of the ELAIS-N1 observations to produce the deepest Faraday cube at low radio frequencies to date, tailored to studies of Galactic synchrotron emission and the intervening magneto-ionic interstellar medium. This Faraday cube covers ~36 deg2 of the sky and has a noise of 27 µJy PSF−1 RMSF−1 in polarised intensity. This is an improvement in noise by a factor of approximately the square root of the number of stacked data cubes (~√20), as expected, compared to the one in a single data cube based on five-to-eight-hour observations. We detect a faint component of diffuse polarised emission in the stacked cube, which was not detected previously. Additionally, we verify the reliability of the ionospheric Faraday rotation corrections estimated from the satellite-based total electron content measurements to be of ~0.05 гad m−2. We also demonstrate that diffuse polarised emission itself can be used to account for the relative ionospheric Faraday rotation corrections with respect to a reference observation.

Funder

Croatian Science Foundation

UK STFC

European Research Council

Istituto Nazionale di Astrofisica

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3