Abstract
We report the discovery of widespread maser emission in non-metastable inversion transitions of NH3 toward various parts of the Sagittarius B2 molecular cloud and star-forming region complex. We detect masers in the J, K = (6, 3), (7,4), (8,5), (9,6), and (10,7) transitions toward Sgr B2(M) and Sgr B2(N), an NH3 (6,3) maser in Sgr B2(NS), and NH3 (7,4), (9,6), and (10,7) masers in Sgr B2(S). With the high angular resolution data of the Karl G. Jansky Very Large Array (JVLA) in the A-configuration, we identify 18 maser spots. Nine maser spots arise from Sgr B2(N), one from Sgr B2(NS), five from Sgr B2(M), and three in Sgr B2(S). Compared to our Effelsberg single-dish data, the JVLA data indicate no missing flux. The detected maser spots are not resolved by our JVLA observations. Lower limits to the brightness temperature are > 3000 K and reach up to several 105 K, manifesting the lines’ maser nature. In view of the masers’ velocity differences with respect to adjacent hot molecular cores and/or UCH II regions, it is argued that all the measured ammonia maser lines may be associated with shocks caused either by outflows or by the expansion of UCH II regions. Overall, Sgr B2 is unique in that it allows us to measure many NH3 masers simultaneously, which may be essential in order to elucidate their thus far poorly understood origin and excitation.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献