Dust-driven wind as a model of broad absorption line quasars

Author:

Naddaf M. H.ORCID,Martinez-Aldama M. L.ORCID,Marziani P.ORCID,Panda S.ORCID,Sniegowska M.ORCID,Czerny B.ORCID

Abstract

Context. We test the scenario according to which the broad absorption line (BAL) phenomenon in quasars (QSOs) is not a temporary stage of their life. In this scenario, the BAL effect acts only if the line of sight is within a spatially limited and collimated massive outflow cone covering only a fraction of the sky from the point of view of the nucleus. Aims. The aim is to understand the theoretical mechanism behind the massive outflow in BAL QSOs, which is important for modelling the impact of quasars on the star formation rate in the host galaxy, and, subsequently, on the galaxy evolution. Methods. We applied the specific theoretical model of dust-driven wind that was developed to explain broad emission lines. The model has considerable predictive power. The 2.5D version of the model called failed radiatively accelerated dusty outflow (FRADO) includes the formation of fast funnel-shaped outflow from the disk for a certain range of black hole masses, Eddington ratios, and metallicities. We now interpret BAL QSO as sources that are viewed along the outflowing stream. We calculated the probabilities of seeing the BAL phenomenon as functions of these global parameters, and we compared these probabilities to those seen in the observational data. We included considerations of the presence or absence of obscuring torus. Results. Comparing our theoretical results with observational data for a sample of QSOs consisting of two sub-populations of BAL and non-BAL QSOs, we found that in the model and in the data, the BAL phenomenon mostly occurs for sources with black hole masses higher than 108M. The effect increases with accretion rate, and high metallicities are also more likely in QSOs showing BAL features if a torus is taken into account. Conclusions. The consistency of the model with the data supports the interpretation of the BAL phenomenon as the result of the orientation of the source. It also supports the underlying theoretical model, although more consistency checks should be made in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3