Semi-analytic calculations for extended mid-infrared emission associated with FU Ori-type objects

Author:

Takami MichihiroORCID,Gu Pin-GaoORCID,Otten Gilles,Delacroix ChristianORCID,Liu Sheng-YuanORCID,Wang Shiang-YuORCID,Karr Jennifer L.

Abstract

Aims. Near-infrared imaging polarimetry at high-angular resolutions has revealed an intriguing distribution of circumstellar dust toward FU Ori-type objects (FUors). These dust grains are probably associated with either an accretion disk or an infalling envelope. Follow-up observations in the mid-infrared would lead us to a better understanding of the hierarchy of the mass accretion processes onto FUors (that is envelope and disk accretion), which hold keys for understanding the mechanism of their accretion outbursts and the growth of low-mass young stellar objects (YSOs) in general. Methods. We developed a semi-analytic method to estimate the mid-infrared intensity distributions using the observed polarized intensity (PI) distributions in the H band (λ = 1.65 μm). This new method allows us to estimate the intensity levels with an order-of-magnitude accuracy, assuming that the emission is a combination of scattered and thermal emission from circumstellar dust grains illuminated and heated by a central source, but the radiation heating through the inner edge of the dust disk is negligible due to the obscuration by an optically thick compact disk. We have derived intensity distributions for two FUors, FU Ori and V1735 Cyg, at three wavelengths (λ = 3.5, 4.8, and 12 μm) for various cases, with a star or a flat compact self-luminous disk as an illuminating source; an optically thick disk or an optically thin envelope for circumstellar dust grains; and three different dust models. The calculations were carried out for typical aspect ratios of the disk surface and the envelope z/r of ~0.1, ~0.2, and ~0.4. Results. We have been able to obtain self-consistent results for many cases and regions, in particular when the viewing angle of the disk or envelope is zero (face-on). Our calculations suggest that the mid-infrared extended emission at the above wavelengths is dominated by the single scattering process. The contribution of thermal emission is negligible unless we add an additional heating mechanism such as adiabatic heating in spiral structures and/or fragments. The uncertain nature of the central illuminating source, the distribution of circumstellar dust grains and the optical properties of dust grains yield uncertainties in the intensity levels on orders of magnitude, for example, 20–800, for the aspect ratio of the disk or the envelope of ~0.2 and λ = 3–13 μm. Conclusions. The new method we have developed is useful for estimating the detectability of the extended mid-infrared emission. Observations with the forthcoming extremely large telescopes, with a telescope diameter of 24–39 m, would yield a breakthrough for the above research topic at angular resolutions comparable to the existing near-infrared observations. The new semi-analytic method is complementary to full radiative transfer simulations, which offer more accurate calculations but only with specific dynamical models and significant computational time.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference65 articles.

1. PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS

2. PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES

3. Audard M., Abraham P., Dunham M. M., et al. 2014, Protostars and Planets VI (Tucson: University of Arizona Press), 387

4. Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., & Andrae R. 2021, VizieR Online Data Catalog: I/352

5. Rapid Formation of Outer Giant Planets by Disk Instability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3