Single-aperture spectro-interferometry in the visible at the Subaru telescope with FIRST: First on-sky demonstration on Keho‘oea (α Lyrae) and Hokulei (α Aurigae)

Author:

Vievard S.,Huby E.,Lacour S.,Guyon O.,Cvetojevic N.,Jovanovic N.,Lozi J.,Barjot K.,Deo V.,Duchêne G.,Kotani T.,Marchis F.,Rouan D.,Martin G.,Lallement M.,Lapeyrere V.,Martinache F.,Ahn K.,Skaf N.,Tamura M.,Leilehua Yuen D.,Leinani Lozi A.,Perrin G.

Abstract

Aims. FIRST is a spectro-interferometer combining, in the visible, the techniques of aperture masking and spatial filtering thanks to single-mode fibers. By turning a monolithic telescope into an interferometer, this instrument aims to deliver high contrast capabilities at spatial resolutions that are inaccessible to classical coronagraphic instruments. Methods. The technique implemented in the FIRST instrument is called pupil remapping: the telescope pupil is divided into subpupils by a segmented deformable mirror conjugated to a micro-lens array injecting light into single-mode fibers. The fiber outputs are rearranged in a nonredundant configuration, allowing simultaneous measurement of all baseline fringe patterns. The fringes are also spectrally dispersed, increasing the coherence length and providing precious spectral information. The optical setup of the instrument has been adapted to fit onto the SCExAO platform at the Subaru Telescope. Results. We present the first on-sky demonstration of the FIRST instrument at the Subaru telescope. We used eight subapertures of the 8.2-meter diameter pupil, each with a diameter of about 1 m. Closure phase measurements were extracted from the interference pattern to provide spatial information on the target. We tested the instrument on two types of targets : a point source (Keho’oea -α Lyrae, mR = 0.1) and a binary system (Hokulei − α Aurigae, mR = −0.52, and a semi-major axis = 56.4 mas). An average accuracy of 0.6° is achieved on the closure phase measurements of Keho‘oea, with a statistical error of about 0.15° at best. We estimate that the instrument can be sensitive to structures down to a quarter of the telescope spatial resolution. We measured the relative positions of Hokulei Aa and Ab with an accuracy ≲1 mas. Conclusions. FIRST opens new observing capabilities in the visible wavelength range at the Subaru Telescope. With SCExAO being a testing platform for high contrast imaging instrumentation for future 30-meter class telescopes, the successful demonstration and exploitation of FIRST is an important stepping stone for future interferometric instrumentation on extremely large telescopes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Astrophotonics-current capabilities and the road ahead [Invited];Applied Optics;2024-08-14

2. Coherent Imaging with Photonic Lanterns;The Astrophysical Journal;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3