Offset between X-ray and optical centers in clusters of galaxies: Connecting eROSITA data with simulations

Author:

Seppi R.,Comparat J.,Nandra K.,Dolag K.,Biffi V.,Bulbul E.,Liu A.,Ghirardini V.,Ider-Chitham J.

Abstract

Context. The characterization of the dynamical state of galaxy clusters is key to studying their evolution, evaluating their selection, and using them as a cosmological probe. In this context, the offsets between different definitions of the center have been used to estimate the cluster disturbance. Aims. Our goal is to study the distribution of the offset between the X-ray and optical centers in clusters of galaxies. We study the offset for clusters detected by the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) observatory. We aim to connect observations to predictions by hydrodynamical simulations and N-body models. We assess the astrophysical effects affecting the displacements. Methods. We measured the offset for clusters observed in the eROSITA Final Equatorial-Depth Survey (eFEDS) and the first eROSITA all-sky survey (eRASS1). We focus on a subsample of 87 massive eFEDS clusters at low redshift, with M500c > 1×1014M and 0.15 < z < 0.4. We compared the displacements in such sample to those predicted by the TNG and the Magneticum simulations. We additionally link the observations to the offset parameter Xoff measured for dark matter halos in N-body simulations, using the hydrodynamical simulations as a bridge. Results. We find that, on average, the eFEDS clusters show a smaller offset compared to eRASS1 because the latter contains a larger fraction of massive and disturbed structures. We measured an average offset of ΔX−O = 76.3−27.1+30.1 kpc, when focusing on the subsample of 87 eFEDS clusters. This is in agreement with the predictions from TNG and Magneticum, and the distribution of Xoff from dark matter only (DMO) simulations. However, the tails of the distributions are different. Using ΔX − O to classify relaxed and disturbed clusters, we measured a relaxed fraction of 31% in the eFEDS subsample. Finally, we found a correlation between the offset measured on hydrodynamical simulations and Xoff measured on their parent dark-matter-only run and we calibrated the relation between them. Conclusions. We conclude that there is good agreement between the offsets measured in eROSITA data and the predictions from simulations. Baryonic effects cause a decrement (increment) in the low (high) offset regime compared to the Xoff distribution from dark matter-only simulations. The offset–Xoff relation provides an accurate prediction of the true Xoff distribution in Magneticum and TNG. It allows for the offsets to be introduced in a cosmological context with a new method in order to marginalize over selection effects related to the cluster dynamical state.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3