Failed supernovae as a natural explanation for the binary black hole mass distribution

Author:

Disberg P.ORCID,Nelemans G.ORCID

Abstract

Context. As the number of detected gravitational wave sources increases, the better we can understand the mass distribution of binary black holes (BBHs). This “stellar graveyard” shows several features, including an apparent mass gap that makes the distribution bimodal. In turn, the observed chirp mass distribution appears to be trimodal. Aims. We aim to investigate the extent to which we can explain the observed mass distribution based on stellar evolution, specifically with the hypothesis that the mass gap is caused by the difference between successful and failed supernovae (SNe). Methods. We posed a hypothetical remnant function, based on the literature of stellar evolution simulations, which relates initial mass to remnant mass, while including a “black hole island” and producing a bimodal remnant distribution. Moreover, we looked at observed type II SN rates in an attempt to detect the effect of failed SNe. Finally, using a simplified estimation of binary evolution, we determined the remnant distribution resulting from our remnant function and compared it with observations. Results. We find that failed SNe lower type II SN rates by approximately 25%, but the inferred rate from SN surveys is not accurate enough to confirm this. Furthermore, our estimation based on the remnant function produces a mass distribution that matches the general shape of the observed distributions of individual as well as chirp masses. Conclusions. Based on our research, we conclude that the failed SN mechanism and the presence of the black hole island are a natural hypothesis for explaining the individual BBH mass distribution and chirp mass distribution. However, to obtain a firmer conclusion, more detailed simulations are needed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients;Monthly Notices of the Royal Astronomical Society;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3