Author:
Fürst F.,Walton D. J.,Israel G. L.,Bachetti M.,Barret D.,Brightman M.,Earnshaw H. P.,Fabian A.,Heida M.,Imbrogno M.,Middleton M. J.,Pinto C.,Salvaterra R.,Roberts T. P.,Rodríguez Castillo G. A.,Webb N.
Abstract
NGC 5907 ULX1 is the most luminous ultra-luminous X-ray pulsar (ULXP) known to date, reaching luminosities in excess of 1041 erg s−1. The pulsar is known for its fast spin-up during the on-state. Here, we present a long-term monitoring of the X-ray flux and the pulse period between 2003 and 2022. We find that the source was in an off- or low-state between mid-2017 to mid-2020. During this state, our pulse period monitoring shows that the source had spun down considerably. We interpret this spin-down as likely being due to the propeller effect, whereby accretion onto the neutron star surface is inhibited. Using state-of-the-art accretion and torque models, we use the spin-up and spin-down episodes to constrain the magnetic field. For the spin-up episode, we find solutions for magnetic field strengths of either around 1012 G or 1013 G, however, the strong spin-down during the off-state seems only to be consistent with a very high magnetic field, namely, > 1013 G. This is the first time a strong spin-down is seen during a low flux state in a ULXP. Based on the assumption that the source entered the propeller regime, this gives us the best estimate so far for the magnetic field of NGC 5907 ULX1.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献