Diffuse solar coronal features and their spicular footpoints

Author:

Milanović N.ORCID,Chitta L. P.ORCID,Peter H.ORCID

Abstract

Context. In addition to a component of the emission that originates from clearly distinguishable coronal loops, the solar corona also exhibits extreme-ultraviolet (EUV) and X-ray ambient emission that is rather diffuse and is often considered undesirable background. Importantly, unlike the generally more structured transition region and chromosphere, the diffuse corona appears to be rather featureless. Aims. The magnetic nature of the diffuse corona, and in particular, its footpoints in the lower atmosphere, are not well understood. We study the origin of the diffuse corona above the quiet-Sun network on supergranular scales. Methods. We identified regions of diffuse EUV emission in the coronal images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To investigate their connection to the lower atmosphere, we combined these SDO/AIA data with the transition region spectroscopic data from the Interface Region Imaging Spectrograph (IRIS) and with the underlying surface magnetic field information from the Helioseismic and Magnetic Imager (HMI), also on board SDO. Results. The region of the diffuse emission is of supergranular size and persists for more than five hours, during which it shows no obvious substructure. It is associated with plasma at about 1 MK that is located within and above a magnetic canopy. The canopy is formed by unipolar magnetic footpoints that show highly structured spicule-like emission in the overlying transition region. Conclusions. Our results suggest that the diffuse EUV emission patch forms at the base of long-ranging loops, and it overlies spicular structures in the transition region. Heated material might be supplied to it by means of spicular upflows, conduction-driven upflows from coronal heating events, or perhaps by flows originating from the farther footpoint. Therefore, the question remains open how the diffuse EUV patch might be sustained. Nevertheless, our study indicates that heated plasma trapped by long-ranging magnetic loops might substantially contribute to the featureless ambient coronal emission.

Funder

European Union

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3