Reaching the boundary between stellar kinematic groups and very wide binaries

Author:

González-Payo J.ORCID,Caballero J. A.ORCID,Cortés-Contreras M.ORCID

Abstract

Aims. With the latest Gaia DR3 data, we analyse the widest pairs in the Washington Double Star (WDS) catalogue with angular separations, ρ, greater than 1000 arcsec. Methods. We confirmed the pairs’ membership to stellar systems based on common proper motions, parallaxes, and (when available) radial velocities, together with the locii of the individual components in colour-magnitude diagrams. We also looked for additional closer companions to the ultrawide pairs, either reported by WDS or found by us with a new Gaia astrometric search. In addition, we determined masses for each star (and white dwarf) and, with the projected physical separation, computed the gravitational potential energy, |Ug*|, of the systems. Results. Of the 155 159 pairs currently catalogued by WDS, there are 504 with ρ > 1000 arcsec. Of these, only 2 ultrawide pairs have not been identified, 10 do not have any available astrometry, 339 have not passed a conservative filtering in proper motion or parallax, 59 are members of young stellar kinematic groups, associations or open clusters, and only 94 remain as bona fide ultrawide pairs in the galactic field. Accounting for the additional members at shorter separations identified in a complementary astrometric and bibliographic search, we found 79 new stars (39 reported, plus 40 not reported by WDS) in 94 ultrawide stellar systems. This sample is expanded when including new close binary candidates with large Gaia DR3 RUWE, σVr, or a proper motion anomaly. Furthermore, the large fraction of subsystems and the non-hierarchical configurations of many wide systems with three or more stars is remarkable. In particular, we found 14 quadruple, 2 quintuple, 3 sextuple, and 2 septuple systems. The minimum computed binding energies, |Ug*| ~ 1033 J, are in line with theoretical predictions of tidal destruction by the Galactic gravitational potential. The most fragile and massive systems have huge projected physical separations of well over 1 pc. Therefore, they are either in the process of disruption or they are part of unidentified juvenile stellar kinematic groups.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combing the brown dwarf desert with Gaia DR3;Monthly Notices of the Royal Astronomical Society;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3