Supermassive Black Hole Winds in X-rays: SUBWAYS

Author:

Mehdipour M.,Kriss G. A.,Brusa M.,Matzeu G. A.,Gaspari M.,Kraemer S. B.,Mathur S.,Behar E.,Bianchi S.,Cappi M.,Chartas G.,Costantini E.,Cresci G.,Dadina M.,De Marco B.,De Rosa A.,Dunn J. P.,Gianolli V. E.,Giustini M.,Kaastra J. S.,King A. R.,Krongold Y.,La Franca F.,Lanzuisi G.,Longinotti A. L.,Luminari A.,Middei R.,Miniutti G.,Nardini E.,Perna M.,Petrucci P.-O.,Piconcelli E.,Ponti G.,Ricci F.,Tombesi F.,Ursini F.,Vignali C.,Zappacosta L.

Abstract

We present a UV spectroscopic study of ionized outflows in 21 active galactic nuclei (AGN), observed with theHubbleSpace Telescope (HST). The targets of the Supermassive Black Hole Winds in X-rays (SUBWAYS) sample were selected with the aim to probe the parameter space of the underexplored AGN between the local Seyfert galaxies and the luminous quasars at high redshifts. Our targets, spanning redshifts of 0.1–0.4 and bolometric luminosities (Lbol) of 1045–1046erg s−1, have been observed with a large multi-wavelength campaign usingXMM-Newton,NuSTAR, and HST. Here, we model the UV spectra and look for different types of AGN outflows that may produce either narrow or broad UV absorption features. We examine the relations between the observed UV outflows and other properties of the AGN. We find that 60% of our targets show a presence of outflowing H Iabsorption, while 40% exhibit ionized outflows seen as absorption by either C IV, N V, or O VI. This is comparable to the occurrence of ionized outflows seen in the local Seyfert galaxies. All UV absorption lines in the sample are relatively narrow, with outflow velocities reaching up to −3300 km s−1. We did not detect any UV counterparts to the X-ray ultra-fast outflows (UFOs), most likely due to their being too highly ionized to produce significant UV absorption. However, all SUBWAYS targets with an X-ray UFO that have HST data demonstrate the presence of UV outflows at lower velocities. We find significant correlations between the column density (N) of the UV ions andLbolof the AGN, withNH Idecreasing withLbol, whileNO VIis increasing withLbol. This is likely to be a photoionization effect, where toward higher AGN luminosities, the wind becomes more ionized, resulting in less absorption by neutral or low-ionization ions and more absorption by high-ionization ions. In addition, we find thatNof the UV ions decreases as their outflow velocity increases. This may be explained by a mechanical power that is evacuating the UV-absorbing medium. Our observed relations are consistent with multiphase AGN feeding and feedback simulations indicating that a combination of both radiative and mechanical processes are in play.

Funder

NASA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3