Solar flare hard X-rays from the anchor points of an eruptive filament

Author:

Zoë Stiefel MurielORCID,Battaglia Andrea FrancescoORCID,Barczynski Krzysztof,Collier HannahORCID,Volpara Anna,Massa PaoloORCID,Schwanitz ConradORCID,Tynelius SofiaORCID,Harra Louise,Krucker SämORCID

Abstract

Context. We present an analysis of a GOES M1.8 flare with excellent observational coverage in UV, extreme-UV (EUV), and X-ray, including observations from the Interface Region Imaging Spectrograph (IRIS), from the Solar Dynamics Observatory (SDO) with the Atmospheric Imaging Assembly (AIA), from the Hinode/EUV Imaging Spectrometer (EIS), from the Hinode/X-ray Telescope (XRT), and from Solar Orbiter with the Spectrometer/Telescope for Imaging X-rays (STIX). Hard X-ray emission is often observed at the footpoints of flare loops and is occasionally observed in the corona. In this flare, four nonthermal hard X-ray sources are seen. Aims. Our aim is to understand why we can observe four individual nonthermal sources in this flare and how we can characterize the physical properties of these four sources. Methods. We used the multiwavelength approach to analyze the flare and characterize the four sources. To do this, we combined imaging at different wavelengths and spectroscopic fitting in the EUV and X-ray range. Results. The flare is eruptive with an associated coronal mass ejection, and it shows the classical flare picture of a heated flare loop seen in EUV and X-rays, and two nonthermal hard X-ray footpoints at the loop ends. In addition to the main flare sources, we observed two outer sources in the UV, EUV, and nonthermal X-ray range located away from the main flare loop to the east and west. The two outer sources are clearly correlated in time, and they are only seen during the first two minutes of the impulsive phase, which lasts a total of about four minutes. Conclusions. Based on the analysis, we determine that the outer sources are the anchor points of an erupting filament. The hard X-ray emission is interpreted as flare-accelerated electrons that are injected upward into the filament and then precipitate along the filament toward the chromosphere, producing Bremsstrahlung. While sources like this have been speculated to exist, this is the first report of their detection.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3