Image enhancement with wavelet-optimized whitening

Author:

Auchère F.ORCID,Soubrié E.ORCID,Pelouze G.ORCID,Buchlin É.ORCID

Abstract

Context. Due to its physical nature, the solar corona exhibits large spatial variations of intensity that make it difficult to simultaneously visualize the features present at all levels and scales. Many general-purpose and specialized filters have been proposed to enhance coronal images. However, most of them require the ad hoc tweaking of parameters to produce subjectively good results. Aims. Our aim was to develop a general purpose image enhancement technique that would produce equally good results, but based on an objective criterion. Methods. The underlying principle of the method is the equalization, or whitening, of power in the à trous wavelet spectrum of the input image at all scales and locations. An edge-avoiding modification of the à trous transform that uses bilateral weighting by the local variance in the wavelet planes is used to suppress the undesirable halos otherwise produced by discontinuities in the data. Results. Results are presented for a variety of extreme ultraviolet (EUV) and white light images of the solar corona. The proposed filter produces sharp and contrasted output, without requiring the manual adjustment of parameters. Furthermore, the built-in denoising scheme prevents the explosion of high-frequency noise typical of other enhancement methods, without smoothing statistically significant small-scale features. The standard version of the algorithm is about two times faster than the widely used multiscale Gaussian normalization (MGN). The bilateral version is slower, but provides significantly better results in the presence of spikes or edges. Comparisons with other methods suggest that the whitening principle may correspond to the subjective criterion of most users when adjusting free parameters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference31 articles.

1. THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA

2. Batson J., & Royer L. 2019, in Proceedings of the 36th International Conference on Machine Learning, eds. Chaudhuri K., & Salakhutdinov R., Proceedings of Machine Learning Research, 97, 524

3. Initial Calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)

4. The Large Angle Spectroscopic Coronagraph (LASCO)

5. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3