Consistency of Type IIP supernova sibling distances

Author:

Csörnyei G.ORCID,Vogl C.,Taubenberger S.,Flörs A.,Blondin S.,Cudmani M. G.,Holas A.,Kressierer S.,Leibundgut B.,Hillebrandt W.

Abstract

Context. Type II supernovae offer a direct way of estimating distances via the expanding photosphere method, which is independent of the cosmic distance ladder. A Gaussian process-based method was recently introduced, allowing for a fast and precise modelling of spectral time series and placing accurate and computationally cheap Type II-based absolute distance determinations within reach. Aims. The goal of this work is to assess the internal consistency of this new modelling technique coupled with the distance estimation in an empirical way, using the spectral time series of supernova siblings, that is, supernovae that exploded in the same host galaxy. Methods. We used a recently developed spectral emulator code, trained on TARDIS radiative transfer models that is capable of a fast maximum-likelihood parameter estimation and spectral fitting. After calculating the relevant physical parameters of supernovae, we applied the expanding photosphere method to estimate their distances. Finally, we tested the consistency of the obtained values by applying the formalism of Bayes factors. Results. The distances to four different host galaxies were estimated based on two supernovae in each. The distance estimates are not only consistent within the errors for each of the supernova sibling pairs, but in the case of two hosts, they are precise to better than 5%. The analysis also showed that the main limiting factor of this estimation is the number and quality of spectra available for the individual objects, rather than the physical differences of the siblings. Conclusions. Even though the literature data we used was not tailored to the requirements of our analysis, the agreement of the final estimates shows that the method is robust and is capable of inferring both precise and consistent distances. By using high-quality spectral time series, this method can provide precise distance estimates independent of the distance ladder, which are of high value for cosmology.

Funder

Excellence Cluster ORIGINS

Deutsche Forschungsgemeinschaf

Klaus Tschira Foundatio

CNRS/INSU

European Research Counci

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3