Universal gravity-driven isothermal turbulence cascade in disk galaxies

Author:

Fensch Jérémy,Bournaud Frédéric,Brucy Noé,Dubois Yohan,Hennebelle Patrick,Rosdahl Joakim

Abstract

While interstellar gas is known to be supersonically turbulent, the injection processes of this turbulence are still unclear. Many studies suggest a dominant role of gravitational instabilities. However, their effect on galaxy morphology and large-scale dynamics varies across cosmic times, in particular, due to the evolution of the gas fraction of galaxies. In this paper, we propose numerical simulations to follow the isothermal turbulent cascade of purely gravitationally driven turbulence from its injection scale down to 0.095 pc for a gas-poor spiral disk and a gas-rich clumpy disk. For this purpose, and to lift the memory-footprint technical lock of sufficiently resolving the interstellar medium of a galaxy, we developed an encapsulated zoom method that allows us to self-consistently probe the self-generated turbulence cascade over three orders of magnitude on spatial scales. We followed this cascade for 10 Myr. We find that the turbulent cascade follows the same scaling laws in both setups. Namely, in both cases, the turbulence is close to equipartition between its compressive and solenoidal modes, the velocity power spectrum follows the Burgers scaling, and the density power spectrum is rather shallow, with a power-law slope of −0.7. Last, gravitationally bound substructures follow a mass distribution with a −1.8 slope, similar to that of CO clumps. These simulations thus suggest that gravity-driven isothermal turbulent cascades are universal in disk galaxies across cosmic time.

Funder

ERC

PNCG

PRACE

GENCI

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studying Magnetic Reconnection with Synchrotron Polarization Statistics;The Astrophysical Journal;2024-07-01

2. The role of the ionizing background on the thermal and non-thermal broadening inferred for the low-z intergalactic O vi absorbers;Monthly Notices of the Royal Astronomical Society;2024-01-23

3. 2a Results: galaxy to cloud scales;Frontiers in Astronomy and Space Sciences;2023-11-09

4. Large-scale turbulence cascade in the spiral galaxy NGC 6946;Monthly Notices of the Royal Astronomical Society;2023-10-05

5. Large-scale turbulent driving regulates star formation in high-redshift gas-rich galaxies;Astronomy & Astrophysics;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3