The multiplicity fraction in 202 open clusters from Gaia

Author:

Donada J.,Anders F.ORCID,Jordi C.,Masana E.,Gieles M.ORCID,Perren G. I.ORCID,Balaguer-Núñez L.,Castro-Ginard A.,Cantat-Gaudin T.,Casamiquela L.ORCID

Abstract

In this study, we estimate the fraction of binaries with high mass ratios for 202 open clusters in the extended solar neighbourhood (closer than 1.5 kpc from the Sun). This is one of the largest homogeneous catalogues of multiplicity fractions in open clusters to date, including the unresolved and total (close-binary) multiplicity fractions of main-sequence systems with mass ratio greater than $ 0.6_{ -0.15}^{+0.05} $. The unresolved multiplicity fractions were estimated applying a flexible mixture model to the observed Gaia colour-magnitude diagrams of the open clusters. Then we used custom Gaia simulations to account for the resolved systems and derived the total multiplicity fractions. The studied open clusters have ages between 6.6 Myr and 3.0 Gyr and total high-mass-ratio multiplicity fractions between 6% and 80%, with a median of 18%. The multiplicity fractions increase with the mass of the primary star, as expected. The average multiplicity fraction per cluster displays an overall decreasing trend with the open cluster age up to ages about 100 Myr, above which the trend increases. Our simulations show that most of this trend is caused by complex selection effects (introduced by the mass dependence of the multiplicity fraction and the magnitude limit of our sample). Furthermore, the multiplicity fraction is not significantly correlated with the clusters’ position in the Galaxy. The spread in multiplicity fraction decreases significantly with the number of cluster members (used as a proxy for cluster mass). We also find that the multiplicity fraction decreases with metallicity, in line with recent studies using field stars.

Funder

Ministry of Science and Innovation of Spain

European Union

Institute of Cosmos Sciences of the University of Barcelona

Agency for Management of University and Research Grants of Generalitat de Catalunya

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3