The resolved scaling relations in DustPedia: Zooming in on the local Universe

Author:

Casasola VivianaORCID,Bianchi Simone,Magrini LauraORCID,Mosenkov Aleksandr V.ORCID,Salvestrini FrancescoORCID,Baes MaartenORCID,Calura FrancescoORCID,Cassarà Letizia P.,Clark Christopher J. R.ORCID,Corbelli Edvige,Fritz JacopoORCID,Galliano FrédéricORCID,Liuzzo Elisabetta,Madden SuzanneORCID,Nersesian AngelosORCID,Pozzi Francesca,Roychowdhury SambitORCID,Baronchelli IvanoORCID,Bonato MatteoORCID,Gruppioni CarlottaORCID,Pantoni LaraORCID

Abstract

Aims. We perform a homogeneous analysis of an unprecedented set of spatially resolved scaling relations (SRs) between interstellar medium (ISM) components, that is to say dust, gas, and gas-phase metallicity, and other galaxy properties, such as stellar mass (Mstar), total baryonic content, and star-formation rate (SFR), in a range of physical scales between 0.3 and 3.4 kpc. We also study some ratios between galaxy components: dust-to-stellar, dust-to-gas, and dust-to-metal ratios. Methods. We use a sample of 18 large, spiral, face-on DustPedia galaxies. The sample consists of galaxies with spatially resolved dust maps corresponding to 15 Herschel-SPIRE 500 μm resolution elements across the optical radius, with the morphological stage spanning from T  =  2 to 8, Mstar from 2 × 109 to 1 × 1011 M, SFR from 0.2 to 13 M yr−1, and oxygen abundance from 12 + log(O/H) = 8.3 to 8.8. Results. All the SRs are moderate or strong correlations except the dust-H I SR that does not exist or is weak for most galaxies. The SRs do not have a universal form but each galaxy is characterized by distinct correlations, affected by local processes and galaxy peculiarities. The SRs hold, on average, starting from the scale of 0.3 kpc, and if a breaking down scale exists it is below 0.3 kpc. By evaluating all galaxies together at the common scale of 3.4 kpc, differences due to peculiarities of individual galaxies are cancelled out and the corresponding SRs are consistent with those of whole galaxies. By comparing subgalactic and global scales, the most striking result emerges from the SRs involving ISM components: the dust-total gas SR is a good correlation at all scales, while the dust-H2 and dust-H I SRs are good correlations at subkiloparsec/kiloparsec and total scales, respectively. For the other explored SRs, there is a good agreement between small and global scales and this may support the picture where the main physical processes regulating the properties and evolution of galaxies occur locally. In this scenario, our results are consistent with the hypothesis of self-regulation of the star-formation process. The analysis of subgalactic ratios between galaxy components shows that they are consistent with those derived for whole galaxies, from low to high redshift, supporting the idea that also these ratios could be set by local processes. Conclusions. Our results highlight the heterogeneity of galaxy properties and the importance of resolved studies on local galaxies in the context of galaxy evolution. They also provide fundamental observational constraints to theoretical models and updated references for high-redshift studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3