Effect of protonation on the UV/VUV photostability of cyano-substituted anthracene and phenanthrene

Author:

Jacovella UgoORCID,Giuliani AlexandreORCID,Hansen Christopher S.ORCID,Trevitt Adam J.,Nahon LaurentORCID,Malloci GiulianoORCID,Mulas GiacomoORCID

Abstract

Context. The vacuum ultraviolet (VUV) photoprocessing of polycyclic aromatic hydrocarbons (PAHs) has been established as a key piece of the puzzle to understand the life cycle of carbon-based molecules in space. The recent detection of cyano (CN) aromatic species, with unexpectedly high abundance, motivated the current study of investigating their interaction with UV/VUV radiation. Aims. The aims were to investigate the fate, after VUV photoexcitatation, of medium-size (three rings) CN-PAH radical cations and of their protonated analogs, and thus to assess the effect of protonation on the photostability of the CN-PAHs. Photoproducts (ionic fragments and dications) were mass-analyzed and measured as a function of photon energy. The results were also compared with those for the bare anthracene radical cation to assess the influence of the added CN group. Methods. The positively charged CN-PAHs were stored in a quadrupole ion trap prior to interrogation by UV/VUV radiation, with photon energies between 4.5 and 13.6 eV, delivered by the DESIRS beamline from the synchrotron SOLEIL. Results. The HCN/HNC loss channel is present for both radical cations and protonated species, but H2 loss is only apparent for the radical cations. Based on comparison with quantum chemical calculations, radiative and/or collisional processes should be relevant at energies lower than 8 eV, with a stronger propensity for radical cation than protonated CN-PAHs. The cata-condensed 9-CN-anthracene has a nearly two-fold larger photoionization yield at 13.6 eV than peri-condensed 9-CN-phenanthrene. Conclusions. The photoionization yield of singly and doubly ionized CN-PAHs is greater for radical cations than for protonated analogs. The photoionization yields of CN-PAHs is diminished by protonation and, in the future, similar investigations should target larger protonated CN-PAHs to support a general model for the photo-processing of these relevant molecular systems. Similar processes to those for the bare PAH radical cations may involve the radical cations of CN-PAHs, making their addition important in models that describe the photoelectric heating of interstellar gas.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3