X-ray radiative transfer in full 3D with SKIRT

Author:

Vander Meulen BertORCID,Camps PeterORCID,Stalevski MarkoORCID,Baes MaartenORCID

Abstract

Context. Models of active galactic nuclei (AGN) suggest that their circumnuclear media are complex with clumps and filaments, while recent observations hint towards polar extended structures of gas and dust, as opposed to the classical torus paradigm. The X-ray band could form an interesting observational window to study these circumnuclear media in great detail. Aims. We want to extend the radiative transfer code SKIRT with the X-ray processes that govern the broad-band X-ray spectra of obscured AGN, to study the structure of AGN circumnuclear media in full 3D, based on their reflected X-ray emission. Methods. We extended the SKIRT code with Compton scattering on free electrons, photo-absorption and fluorescence by cold atomic gas, scattering on bound electrons, and extinction by dust. This includes a novel treatment of extreme-forward scattering by dust, and a detailed description of anomalous Rayleigh scattering. To verify our X-ray implementation, we performed the first dedicated benchmark of X-ray torus models, comparing five X-ray radiative transfer codes. Results. The resulting radiative transfer code covers the X-ray to millimetre wavelength range self-consistently, has all the features of the established SKIRT framework, is publicly available, and is fully optimised to operate in arbitrary 3D geometries. In the X-ray regime, we find an excellent agreement with the simulation results of the MYTORUS and REFLEX codes, which validates our X-ray implementation. We find some discrepancies with other codes, which illustrates the complexity of X-ray radiative transfer and motivates the need for a robust framework that can handle non-linear 3D radiative transfer effects. We illustrate the 3D nature of the code by producing synthetic X-ray images and spectra of clumpy torus models. Conclusions. SKIRT forms a powerful new tool to model circumnuclear media in full 3D, and make predictions for the X-ray band in addition to the dust-dominated infrared-to-UV wavelength range. The new X-ray functionalities of the SKIRT code allow for uncomplicated access to a broad suite of 3D X-ray models for AGN that can easily be tested and modified. This will be particularly useful with the advent of X-ray microcalorimeter observations in the near future.

Funder

Fund for Scientific Research Flanders

Science Fund of the Republic of Serbia

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference146 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3