KiDS-Legacy calibration: Unifying shear and redshift calibration with the SKiLLS multi-band image simulations

Author:

Li Shun-ShengORCID,Kuijken KonradORCID,Hoekstra HenkORCID,Miller Lance,Heymans Catherine,Hildebrandt HendrikORCID,van den Busch Jan LucaORCID,Wright Angus H.ORCID,Yoon MijinORCID,Bilicki MaciejORCID,Bravo Matías,Lagos Claudia del P.

Abstract

We present SKiLLS, a suite of multi-band image simulations for the weak lensing analysis of the complete Kilo-Degree Survey (KiDS), dubbed KiDS-Legacy analysis. The resulting catalogues enable joint shear and redshift calibration, enhancing the realism and hence accuracy over previous efforts. To create a large volume of simulated galaxies with faithful properties and to a sufficient depth, we integrated cosmological simulations with high-quality imaging observations. We also improved the realism of simulated images by allowing the point spread function (PSF) to differ between CCD images, including stellar density variations and varying noise levels between pointings. Using realistic variable shear fields, we accounted for the impact of blended systems at different redshifts. Although the overall correction is minor, we found a clear redshift-bias correlation in the blending-only variable shear simulations, indicating the non-trivial impact of this higher-order blending effect. We also explored the impact of the PSF modelling errors and found a small yet noticeable effect on the shear bias. Finally, we conducted a series of sensitivity tests, including changing the input galaxy properties. We conclude that our fiducial shape measurement algorithm, lensfit, is robust within the requirements of lensing analyses with KiDS. As for future weak lensing surveys with tighter requirements, we suggest further investments in understanding the impact of blends at different redshifts, improving the PSF modelling algorithm and developing the shape measurement method to be less sensitive to the galaxy properties.

Funder

Netherlands Research School for Astronomy

Royal Society and Imperial College

Netherlands Organisation for Scientific Research

UK Science and Technology Facilities Council

European Research Council

Max Planck Society and the Alexander von Humboldt Foundation

Deutsche Forschungsgemeinschaft Heisenberg

Polish National Science Center

Polish Ministry of Science and Higher Education

University of Western Australia

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3