A runaway T Tauri star leaving an extended trail

Author:

Martí Josep,Luque-Escamilla Pedro L.,Sánchez-Ayaso Estrella

Abstract

Aims.We address the problem of young stellar objects that are found too far away from possible star formation sites. Different mechanisms have been proposed before to explain this unexpected circumstance. The idea of high-velocity protostars is one of these mechanisms, although observational support is not always easy to obtain. We aim to shed light on this issue after the serendipitous discovery of a related stellar system.Methods.Following the inspection of archival infrared data, a peculiar anonymous star was found that apparently heads a long tail that resembles a wake-like feature. We conducted a multiwavelength analysis including photometry, astrometry, and spectroscopy. Together with theoretical physical considerations, this approach provided a reasonable knowledge of the stellar age and kinematic properties, together with compelling indications that the extended feature is indeed the signature of a high-velocity, or runaway, newborn star.Results.Our main result is the discovery of a low-mass young stellar object that fits the concept of a runaway T Tauri star that was hypothesized several decades ago. In this peculiar star, nicknamed UJT-1, the interaction of the stellar wind with the surrounding medium becomes extreme. Under reasonable assumptions, this unusual degree of interaction has the potential to encode the mass-loss history of the star on timescales of several ∼105years.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3