Impact of opacity effects on chromospheric oscillations inferred from NLTE inversions

Author:

Felipe T.ORCID,Socas-Navarro H.ORCID

Abstract

Context. Spectropolarimetric inversions are a fundamental tool for diagnosing the solar atmosphere. Chromospheric inferences rely on the interpretation of spectral lines that are formed under nonlocal thermodynamic equilibrium (NLTE) conditions. In the presence of oscillations, changes in the opacity impact the response height of the spectral lines and hinder the determination of the real properties of the fluctuations. Aims. We aim to explore the relationship between the chromospheric oscillations inferred by NLTE inversion codes and the intrinsic fluctuations in velocity and temperature produced by the waves. Methods. We computed numerical simulations of wave propagation in a sunspot umbra with the code MANCHA. We used the NLTE synthesis and inversion code NICOLE to compute spectropolarimetric Ca II 8542 Å line profiles for the atmospheric models obtained as the output from the simulations. We then inverted the synthetic profiles and compared the inferences from the inversions with the known atmospheres from the simulations. Results. NLTE inversions of the Ca II 8542 Å line capture low-frequency oscillations, including those in the main band of chromospheric oscillations around 6 mHz. In contrast, waves with frequencies above 9 mHz are poorly characterized by the inversion results. Velocity oscillations at those higher frequencies exhibit clear signs of opacity fluctuations; namely the power of the signal at constant optical depth greatly departs from the power of the oscillations at constant geometrical height. The main response of the line to velocity fluctuations comes from low chromospheric heights, whereas the response to temperature shows sudden jumps between the high photosphere and the low chromosphere. This strong variation in the height where the line is sensitive to temperature is revealed as a strong oscillatory power in the inferred fluctuations, which is much stronger than the actual power from the intrinsic temperature oscillations. Conclusions. Our results validate the use of NLTE inversions to study chromospheric oscillations with frequencies below ∼9 mHz. However, the interpretation of higher-frequency oscillations and the power of temperature oscillations must be addressed with care, as these exhibit signatures of opacity oscillations.

Funder

Ministerio de Ciencia e Innovación

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3