DREAM

Author:

Attia O.ORCID,Bourrier V.ORCID,Delisle J.-B.ORCID,Eggenberger P.ORCID

Abstract

The spin–orbit angle, or obliquity, is a powerful observational marker that allows us to access the dynamical history of exoplanetary systems. For this study, we have examined the distribution of spin–orbit angles for close-in exoplanets and put it in a statistical context of tidal interactions between planets and their host stars. We confirm the previously observed trends between the obliquity and physical quantities directly connected to tides, namely the stellar effective temperature, the planet-to-star mass ratio, and the scaled orbital distance. We further devised a tidal efficiency factor τ combining critical parameters that control the strength of tidal effects and used it to corroborate the strong link between the spin–orbit angle distribution and tidal interactions. In particular, we developed a readily usable formula θ (τ) to estimate the probability that a system is misaligned, which will prove useful in global population studies. By building a robust statistical framework, we reconstructed the distribution of the three-dimensional spin–orbit angles, allowing for a sample of nearly 200 true obliquities to be analyzed for the first time. This realistic distribution maintains the sky-projected trends, and additionally hints toward a striking pileup of truly aligned systems. In fact, we show that the fraction of aligned orbits could be underestimated in classical analyses of sky-projected obliquities due to an observational bias toward misaligned systems. The comparison between the full population and a pristine subsample unaffected by tidal interactions suggests that perpendicular architectures are resilient toward tidal realignment, providing evidence that orbital misalignments are sculpted by disruptive dynamical processes that preferentially lead to polar orbits. On the other hand, star–planet interactions seem to efficiently realign or quench the formation of any tilted configuration other than for polar orbits, and in particular for antialigned orbits. Observational and theoretical efforts focused on these pristine systems are encouraged in order to study primordial mechanisms shaping orbital architectures, which are unaltered by tidal effects.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3