The proto-neutron star inner crust in the liquid phase

Author:

Dinh Thi H.ORCID,Fantina A. F.ORCID,Gulminelli F.ORCID

Abstract

Context. The crust of a neutron star is known to melt at a temperature that increases with increasing matter density, up to about 1010 K. At such high temperatures and beyond, the crustal ions are put into collective motion and the associated entropy contribution can affect both the thermodynamic properties and the composition of matter. Aims. We studied the importance of this effect in different thermodynamic conditions relevant to the inner crust of the proto-neutron star, both at beta equilibrium and in the fixed-proton-fraction regime. Methods. To this aim, we solved the hydrodynamic equations for an ion moving in an incompressible, irrotational, and non-viscous fluid, with different boundary conditions, thus leading to different prescriptions for the ion effective mass. We then employed a compressible liquid-drop approach in the one-component plasma approximation, including the renormalisation of the ion mass to account for the influence of the surrounding medium. Results. We show that the cluster size is determined by the competition between the ion centre-of-mass motion and the interface properties, namely the Coulomb, surface, and curvature energies. In particular, including the translational free energy in the minimisation procedure can significantly reduce the optimal number of nucleons in the clusters and lead to an early dissolution of clusters in dense beta-equilibrated matter. On the other hand, we find that the impact of translational motion is reduced in scenarios where the proton fraction is assumed constant and is almost negligible on the inner-crust equation of state. Conclusions. Our results show that the translational degrees of freedom affect the equilibrium composition of beta-equilibrated matter and the density and pressure of the crust-core transition in a non-negligible way, highlighting the importance of its inclusion when modelling the finite-temperature inner crust of the (proto-)neutron star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3