Disentangling UV photodesorption and photoconversion rates of H2O ice at 20 K

Author:

Bulak M.,Paardekooper D. M.,Fedoseev G.,Samarth P.,Linnartz H.

Abstract

Context. The nondissociative ultraviolet photodesorption of water ice is a nonthermal desorption mechanism required to account for detected abundances of gas-phase water toward cold regions within the interstellar medium. Previous experimental and theoretical studies provide a range of photodesorption rates for H2O ice and point to a convoluted competition with other molecular processes following the absorption of a UV photon in the ice. Ultraviolet irradiation also induces photodissociation, resulting in the formation of radicals that may directly desorb triggering gas-phase reactions or recombine in surface reactions. Aims. In this work, we aim to quantify the effects of photodesorption and investigate photoconversion upon UV photolysis of an H2O ice. Methods. We irradiated a porous amorphous H2O ice at 20 K with UV photons in the 7–10.2 eV range and compared the measurements to a nearly identical experiment that included a layer of argon coating on top of the water ice. The purpose of the argon coating is to quench any type of photon-triggered desorption. To trace ice composition and thickness, laser desorption post ionization time-of-flight mass spectrometry was utilized. This method is independent of the (non)dissociative character of a process and provides a diagnostic tool different from earlier studies that allows an independent check. Results. The total photodesorption rate for a porous amorphous H2O ice at 20 K we derive is (1.0 ± 0.2) × 10−3 per incident UV photon (7–10.2 eV), which is in agreement with the available literature. This rate is based on the elemental balance of oxygen-bearing species. As a result, we placed an upper limit on the intact (H2O) and dissociative (OH) desorption rates equal to 1.0 × 10−3 per incident UV photon, while for the reactive desorption (O2), this limit is equal to 0.5 × 10−3 per incident UV photon. Photoconversion depletes the H2O ice at a rate of (2.3 ± 0.2) × 10−3 per incident UV photon. At low UV fluence (9.0 × 1017 photons cm−2), the loss of H2O is balanced by photoproduct formation (O2 and H2O2). At high UV fluence (4.5 × 1018 photons cm−2), about 50% of the initial H2O molecules are depleted. This amount is not matched by the registered O-bearing products, which points to an additional, unaccounted loss channel of H2O.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3