Linking the dust and chemical evolution: Taurus and Perseus

Author:

Navarro-Almaida D.ORCID,Bop C. T.ORCID,Lique F.ORCID,Esplugues G.,Rodríguez-Baras M.,Kramer C.ORCID,Romero C. E.ORCID,Fuente A.ORCID,Caselli P.,Rivière-Marichalar P.ORCID,Kirk J. M.,Chacón-Tanarro A.,Roueff E.ORCID,Mroczkowski T.ORCID,Bhandarkar T.,Devlin M.ORCID,Dicker S.ORCID,Lowe I.,Mason B.,Sarazin C. L.ORCID,Sievers J.

Abstract

Context. HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. Aims. Our goal is to perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. Methods. We used updated collisional rates of HCN, HNC, and their isotopologues in our analysis of the chemistry of TMC 1-C (Taurus) and NGC 1333-C7 (Perseus). With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 µm allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. Results. The H13CN/HN13C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index (β ~ 1.34–2.09) shows a tentative anticorrelation with the H13CN/HN13C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. Conclusions. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3