HSC-CLAUDS survey: The star formation rate functions since z  ∼  2 and comparison with hydrodynamical simulations

Author:

Picouet V.,Arnouts S.,Le Floc’h E.,Moutard T.,Kraljic K.,Ilbert O.,Sawicki M.,Desprez G.,Laigle C.,Schiminovich D.,de la Torre S.,Gwyn S.,McCracken H. J.,Dubois Y.,Davé R.,Toft S.,Weaver J. R.,Shuntov M.,Kauffmann O. B.

Abstract

Context. Star formation rate functions (SFRFs) give an instantaneous view of the distribution of star formation rates (SFRs) in galaxies at different epochs. They are a complementary and more stringent test for models than the galaxy stellar mass function, which gives an integrated view of the past star formation activity. However, the exploration of SFRFs has been limited thus far due to difficulties in assessing the SFR from observed quantities and probing the SFRF over a wide range of SFRs. Aims. We overcome these limitations thanks to an original method that predicts the infrared luminosity from the rest-frame UV/optical color of a galaxy and then its SFR over a wide range of stellar masses and redshifts. We applied this technique to the deep imaging survey HSC-CLAUDS combined with near-infrared and UV photometry. We provide the first SFR functions with reliable measurements in the high- and low-SFR regimes up to z = 2 and compare our results with previous observations and four state-of-the-art hydrodynamical simulations. Methods. The SFR estimates are based on the calibration of the infrared excess (IRX = LIR/LUV) in the NUVrK color-color diagram. We improved upon the original calibration in the COSMOS field by incorporating Herschel photometry, which allowed us to extend the analysis to higher redshifts and to galaxies with lower stellar masses using stacking techniques. Our NrK method leads to an accuracy of individual SFR estimates of σ ∼ 0.25 dex. We show that it reproduces the evolution of the main sequence up to z = 2 and the behavior of the attenuation (or ⟨IRX⟩) with stellar mass. In addition to the known lack of evolution of this relation up to z = 2 for galaxies with M ≤ 1010.3M, we observe a plateau in ⟨IRX⟩ at higher stellar masses that depends on redshift. Results. We measure the SFR functions and cosmic SFR density up to z = 2 for a mass-selected star-forming galaxy sample (with a mass limit of M ≥ 2.109M at z = 2). The SFR functions cover a wide range of SFRs (0.01 ≤ SFR ≤ 1000 M yr−1), providing good constraints on their shapes. They are well fitted by a Schechter function after accounting for the Eddington bias. The high-SFR tails match the far-infrared observations well, and show a strong redshift evolution of the Schechter parameter, SFR, as log10(SFR⋆) = 5.8z + 0.76. The slope of the SFR functions, α, shows almost no evolution up to z = 1.5 − 2 with α = −1.3 ± 0.1. We compare the SFR functions with predictions from four state-of-the-art hydrodynamical simulations. Significant differences are observed between them, and none of the simulations are able to reproduce the observed SFRFs over the whole redshift and SFR range. We find that only one simulation is able to predict the fraction of highly star-forming galaxies at high z, 1 ≤ z ≤ 2. This highlights the benefits of using SFRFs as a constraint that can be reproduced by simulations; however, despite efforts to incorporate more physically motivated prescriptions for star-formation and feedback processes, its use remains challenging.

Funder

NASA

Spin(e) ANR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Major merger fraction along the massive galaxy-quenching channel at 0.2 < z < 0.7;Publications of the Astronomical Society of Japan;2024-07-10

2. The dust attenuation scaling relation of star-forming galaxies in the eagle simulations;Monthly Notices of the Royal Astronomical Society;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3