Milky Way globular clusters on cosmological timescales

Author:

Ishchenko Maryna,Sobolenko Margaryta,Berczik Peter,Khoperskov Sergey,Omarov Chingis,Sobodar Olexander,Makukov Maxim

Abstract

Context. Recent observational data show that the Milky Way galaxy contains about 170 globular clusters. A fraction of them is likely formed in dwarf galaxies that were accreted onto the Milky Way in the past, while the remaining clusters were formed in situ. Therefore, the different parameters, including the orbits, of the globular clusters are a valuable tool for studying the Milky Way evolution. However, because the evolution of the 3D mass distribution of the Milky Way is poorly constrained, the orbits of the clusters are usually calculated in static potentials. Aims. We study the evolution of the globular clusters in several external potentials, where we aim to quantify the effects of the evolving galaxy potential on the orbits of the globular clusters. Methods. For the orbit calculation, we used five Milky Way-like potentials from the IllustrisTNG-100 simulation. The orbits of 159 globular clusters were integrated using the high-order N-body parallel dynamic code φ-GPU, with initial conditions obtained from the recent Gaia Data Release 3 catalogues. Results. We provide a classification of the globular cluster orbits according to their 3D shapes and association with different components of the Milky Way (disk, halo, and bulge). We also found that the energy – angular momentum of the globular clusters in the external potentials is roughly similarly distributed at the present time. However, neither total energy nor total angular momentum of the globular clusters are conserved due to time-varying nature of the potentials. In some extreme cases, the total energy can change up to 40% (18 objects) over the last 5 Gyr of evolution. We found that the in situ formed globular clusters are less affected by the evolution of the TNG potentials than clusters that were likely formed ex situ. Therefore, our results suggest that time-varying potentials significantly affect the orbits of the globular clusters, thus making them vital for understanding the formation of the Milky Way.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3