How noise thresholds affect the information content of stellar flare sequences

Author:

Rivera Elmer C.ORCID,Johnson Jay R.ORCID,Homan Jonathan,Wing SimonORCID

Abstract

Systems that exhibit discrete dynamics can be well described and reconstructed by considering the set of time intervals between the discrete events of the system. TheKeplersatellite has cataloged light curves for many Sun-like stars, and these light curves show strong bursts in intensity that are associated with stellar flares. The waiting time between these flares describes the fundamental dynamics of the stars and is driven by physical processes, such as flux emergence. While it is rather straightforward to identify large flares, the identification of weaker flares can be challenging because of the presence of noise. A common practice is to limit flare identification to events stronger than a threshold value that significantly exceeds the noise level (), whereσis the standard deviation of the fluctuations about the detrended light curve. However, the selection of thek-value is normally made based on an empirical rule (typicallyk = 3), which can lead to a biased threshold level. This study examines the information content in the waiting time sequence of enhancements in the light curve of a solar-type star (KIC 7985370) as a function of threshold. Information content is quantified by the mutual information between successive flare waiting times. It is found that the information content increases as the threshold is reduced fromk = 3 tok = 1.56, in contrast with the notion that low amplitude enhancements are simply random noise. However, belowk = 1.56 the information content dramatically decreases, consistent with shot noise. The information that is detected atk = 1.56 and above is similar to that of solar flares and indicates a significant relationship between the low amplitude enhancements, suggesting that many of those events are likely flares. We suggest that mutual information could be used to identify a threshold that maximizes the information content of the flare sequence, making it possible to extract more flare information from stellar light curves.

Funder

NASA

National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Horizon of Solar Active Regions;The Astrophysical Journal Letters;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3