INSPIRE: INvestigating Stellar Population In RElics

Author:

D’Ago G.ORCID,Spiniello C.ORCID,Coccato L.,Tortora C.ORCID,La Barbera F.ORCID,Arnaboldi M.ORCID,Bevacqua D.ORCID,Ferré-Mateu A.ORCID,Gallazzi A.ORCID,Hartke J.ORCID,Hunt L. K.ORCID,Martín-Navarro I.ORCID,Napolitano N. R.ORCID,Pulsoni C.ORCID,Radovich M.ORCID,Saracco P.ORCID,Scognamiglio D.ORCID,Zibetti S.ORCID

Abstract

Context. The project called INvestigating Stellar Population In RElics (INSPIRE) is based on VLT/X-shooter data from the homonymous on-going ESO Large Program. It targets 52 ultra-compact massive galaxies at 0.1 < z < 0.5 with the goal of constraining their kinematics and stellar population properties in great detail and of analysing their relic nature. Aims. This is the second INSPIRE data release (DR2), comprising 21 new systems with observations completed before March 2022. For each system, we release four one-dimensional (1D) spectra to the ESO Science Archive, one spectrum for each arm of the X-Shooter spectrograph. They are at their original resolution. We also release a combined and smoothed spectrum with a full width at half maximum resolution of 2.51 Å. In this paper, we focus on the line-of-sight velocity distribution, measuring integrated stellar velocity dispersions from the spectra, and assessing their robustness and the associated uncertainties. Methods. For each of the 21 new systems, we systematically investigated the effect of the parameters and set-ups of the full spectral fitting on the stellar velocity dispersion (σ) measurements. In particular, we tested how σ changes when several parameters of the fit as well as the resolution and spectral coverage of the input spectra are varied. Results. We found that the effect that causes the largest systematic uncertainties on σ is the wavelength range used for the fit, especially for spectra with a lower signal-to-noise ratio (S/N ≤ 30). When using blue wavelengths (UVB arm) one generally underestimates the velocity dispersion (by ~15 km s−1). The values obtained from the near-IR (NIR) arm present a larger scatter because the quality of the spectra is lower. We finally compared our results with those in literature, finding a very good agreement overall. Conclusions. Joining results obtained in DR1 with those presented here, INSPIRE contains 40 ultra-compact massive galaxies, corresponding to 75% of the whole survey. By plotting these systems in a stellar mass-velocity dispersion diagram, we identify at least four highly reliable relic candidates among the new systems. Their velocity dispersion is larger than that of normal-sized galaxies of similar stellar mass.

Funder

BASAL CATA

Hintze Family Charitable Foundation

INAF PRIN-INAF 2019 program

Postdoctoral Junior Leader Fellowship Programme from `La Caixa' Banking Foundation

Severo Ochoa Excellence scheme of the MCIU

International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne

Anillo

FONDEQUIP

QUIMAL

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3